-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathepilogue_fwd.hpp
419 lines (380 loc) · 24 KB
/
epilogue_fwd.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/fast_math.h> // For FastDivMod
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/builders/sm90_common.inl"
#include "cutlass/epilogue/collective/builders/sm90_common.inl"
#include "seqlen.h"
#include "named_barrier.hpp"
#include "pack_gqa.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <class TileShape_MNK_, class ClusterShape_, class Element_, class ArchTag_,
int NumEpilogueThreads_, bool Varlen_, bool PackGQA_, bool FP8PermuteCol=false>
struct CollectiveEpilogueFwd {
using TileShape_MNK = TileShape_MNK_;
using ClusterShape = ClusterShape_;
using Element = Element_;
using ArchTag = ArchTag_;
static constexpr int NumEpilogueThreads = NumEpilogueThreads_;
static constexpr bool Varlen = Varlen_;
static constexpr bool PackGQA = PackGQA_;
static constexpr bool Use_smem = sizeof(Element) <= 2;
static constexpr bool Use_TMA_O = ArchTag::kMinComputeCapability >= 90 && !Varlen && Use_smem && !PackGQA;
static_assert(ArchTag::kMinComputeCapability >= 80);
static_assert(ArchTag::kMinComputeCapability >= 90 || CUTE_STATIC_V(size(ClusterShape{})) == 1);
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using GmemTiledCopyOTMA = cute::SM90_TMA_STORE;
// These are for storing the output tensor without TMA (e.g., for setting output to zero)
static constexpr int kGmemElemsPerStore = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerStore == 0, "Headdim must be a multiple of kGmemElemsPerStore");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). We want each thread to have 4 elements
// in the M direction and 2 elements in the K direction. In the case of PackGQA, this reduces the number of times
// we need to call divmod.
static constexpr int kBytePerRow = kHeadDim * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerRow % 128 == 0 ? 128 : (kBytePerRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
// static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
// static constexpr int kGmemThreadsPerRow = cutlass::gcd(kHeadDim / kGmemElemsPerStore, NumEpilogueThreads);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerStore;
// If PackGQA, we split the work of compute O_ptr among threads in the same row, so we need this to within a warp
static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRow == 0);
static_assert(NumEpilogueThreads % kGmemThreadsPerRow == 0, "NumEpilogueThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<NumEpilogueThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0, "kBlockM must be a multiple of NumEpilogueThreads / kGmemThreadsPerRow");
using GmemTiledCopyO = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerStore>>>{})); // Val layout, 8 or 16 vals per store
using SmemLayoutAtomOTMA = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutOTMA = decltype(tile_to_shape(SmemLayoutAtomOTMA{}, select<0, 2>(TileShape_MNK{})));
static constexpr int kSwizzle = kBlockKGmem == 128 ? 4 : (kBlockKGmem == 64 ? 3 : (kBlockKGmem == 32 ? 2 : 1));
static constexpr int kSwizzleBase = sizeof(Element) == 4 ? 2 : (sizeof(Element) == 2 ? 3 : 4);
using SmemLayoutAtomO = decltype(
composition(Swizzle<kSwizzle, kSwizzleBase, kSwizzleBase>{},
Layout<Shape<_8, Int<kBlockKGmem>>,
Stride<Int<kBlockKGmem>, _1>>{}));
using SmemLayoutOSTS = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 2>(TileShape_MNK{})));
using SmemLayoutO = std::conditional_t<ArchTag::kMinComputeCapability >= 90, SmemLayoutOTMA, SmemLayoutOSTS>;
using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>; // (seqlen_q, d, head, batch, num_splits)
using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t, int64_t>;
using StrideLSE = cute::Stride<_1, int64_t, int64_t, int64_t>; // (seqlen_q, head, batch, num_splits)
// ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
using ShapeOPacked = std::conditional_t<!PackGQA, ShapeO, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t, int32_t>>;
using StrideOPacked = std::conditional_t<!PackGQA, StrideO, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t, int64_t>>;
// ((qhead_per_khead, seqlen_q), nheads_kv, batch, num_splits)
using ShapeLSEPacked = std::conditional_t<!PackGQA, cute::Shape<int32_t, int32_t, int32_t, int32_t>, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
using StrideLSEPacked = std::conditional_t<!PackGQA, StrideLSE, cute::Stride<cute::Stride<int64_t, _1>, int64_t, int64_t, int64_t>>;
using CopyOpR2S = std::conditional_t<
ArchTag::kMinComputeCapability >= 90,
// cute::SM90_U32x4_STSM_N if Element size is 2 bytes (fp16, bf16)
decltype(cutlass::epilogue::collective::detail::sm90_get_smem_store_op_for_accumulator<StrideO, Element>()),
AutoVectorizingCopyWithAssumedAlignment<128>
>;
using SmemCopyAtomO = Copy_Atom<CopyOpR2S, Element>;
// static constexpr size_t SmemAlignmentO = cutlass::detail::alignment_for_swizzle(SmemLayoutO{});
// static_assert(SmemAlignmentO >= 128, "Require at least 128B alignment");
// struct TensorStorage : cute::aligned_struct<SmemAlignmentO> {
// cute::array_aligned<Element, Use_smem ? cute::cosize_v<SmemLayoutO> : 0, SmemAlignmentO> smem_o;
// };
struct TensorStorage : cute::aligned_struct<128> {
cute::array_aligned<Element, Use_smem ? cute::cosize_v<SmemLayoutO> : 0> smem_o;
};
using TMA_O = std::conditional_t<
Use_TMA_O,
decltype(make_tma_copy(
GmemTiledCopyOTMA{},
make_tensor(make_gmem_ptr(static_cast<Element*>(nullptr)), ShapeO{}, StrideO{}),
SmemLayoutOTMA{},
select<0, 2>(TileShape_MNK{}),
_1{})), // no mcast for O
std::nullptr_t
>;
// Host side kernel arguments
struct Arguments {
Element* ptr_O;
ShapeO const shape_O;
StrideO const stride_O;
float* ptr_LSE;
StrideLSE const stride_LSE;
int32_t const nheads_kv;
int const* cu_seqlens = nullptr;
int const* seqused = nullptr;
};
// Device side kernel params
struct Params {
Element* ptr_O;
ShapeO const shape_O;
StrideO const stride_O;
ShapeOPacked const shape_O_packed;
StrideOPacked const stride_O_packed;
float* ptr_LSE;
StrideLSE const stride_LSE;
ShapeLSEPacked const shape_LSE_packed;
StrideLSEPacked const stride_LSE_packed;
cutlass::FastDivmod qhead_per_khead_divmod;
TMA_O tma_store_O;
int const* cu_seqlens = nullptr;
int const* seqused = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mO = make_tensor(make_gmem_ptr(args.ptr_O), args.shape_O, args.stride_O);
TMA_O tma_store_O = [&]{
if constexpr (Use_TMA_O) {
return make_tma_copy(GmemTiledCopyOTMA{}, mO, SmemLayoutO{}, select<0, 2>(TileShape_MNK{}), _1{}); // no mcast
} else {
return nullptr;
}
}();
// If PackGQA, reshape O to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size, num_splits)
int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_O), args.nheads_kv);
auto const shape_O_packed = cute::conditional_return<!PackGQA>(
args.shape_O,
make_shape(make_shape(qhead_per_khead, get<0>(args.shape_O)), get<1>(args.shape_O), args.nheads_kv, get<3>(args.shape_O), get<4>(args.shape_O))
);
auto const stride_O_packed = cute::conditional_return<!PackGQA>(
args.stride_O,
make_stride(make_stride(get<2>(args.stride_O), get<0>(args.stride_O)), get<1>(args.stride_O), get<2>(args.stride_O) * qhead_per_khead, get<3>(args.stride_O), get<4>(args.stride_O))
);
// If PackGQA, Reshape LSE to be ((qhead_per_khead, seqlen_q), nhead_k, batch_size, num_splits)
auto const shape_LSE_packed = cute::conditional_return<!PackGQA>(
select<0, 2, 3, 4>(args.shape_O),
make_shape(make_shape(qhead_per_khead, get<0>(args.shape_O)), args.nheads_kv, get<3>(args.shape_O), get<4>(args.shape_O))
);
auto const stride_LSE_packed = cute::conditional_return<!PackGQA>(
args.stride_LSE,
make_stride(make_stride(get<1>(args.stride_LSE), get<0>(args.stride_LSE)), get<1>(args.stride_LSE) * qhead_per_khead, get<2>(args.stride_LSE), get<3>(args.stride_LSE))
);
return {args.ptr_O, args.shape_O, args.stride_O, shape_O_packed, stride_O_packed,
args.ptr_LSE, args.stride_LSE, shape_LSE_packed, stride_LSE_packed,
cutlass::FastDivmod(qhead_per_khead),
tma_store_O, args.cu_seqlens, args.seqused};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& params) {
if constexpr (Use_TMA_O) {
cute::prefetch_tma_descriptor(params.tma_store_O.get_tma_descriptor());
}
}
template <typename SharedStorage, typename FrgTensorO, typename FrgTensorLSE, typename TiledMma>
CUTLASS_DEVICE void
store(Params const& params,
FrgTensorO const& tOrO,
FrgTensorLSE const& lse,
SharedStorage& shared_storage,
TiledMma tiled_mma,
int thread_idx,
cute::tuple<int32_t, int32_t, int32_t, int32_t> const& block_coord
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
Tensor sO = make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_o.data()), SmemLayoutO{});
// Tensor sO_pi = cute::as_position_independent_swizzle_tensor(sO);
Tensor tOrO_out = make_tensor_like<Element>(tOrO);
flash::convert_type_out(tOrO, tOrO_out);
if constexpr (FP8PermuteCol && (sizeof(Element) == 2 || sizeof(Element) == 4)) { flash::permute_output_fp8_Vcolmajor(tOrO_out); }
// Make sure all WGs have finished reading V
// Technically we don't need this if we're not using smem, but the mainloop makes the assumption that
// all epilogue threads sync at least once during the epilogue (so that we can start loading Q with
// cp.async if we need).
flash::named_barrier_sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
// Step 1: Write O from rmem -> smem
if constexpr (Use_smem) {
auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma);
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// Tensor taccOsO = smem_thr_copy_O.partition_D(sO_pi); // ((Atom,AtomNum),PIPE_M,PIPE_N)
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
if constexpr (Use_TMA_O) {
cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
cutlass::arch::NamedBarrier::arrive(NumEpilogueThreads + cutlass::NumThreadsPerWarp,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
} else {
flash::named_barrier_sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
}
} else {
if constexpr (ArchTag::kMinComputeCapability >= 90) {
#pragma unroll
for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
shared_storage.pipelines.barrier_O.arrive(cta_id);
}
}
}
flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{bidb, size<0>(params.shape_O), params.cu_seqlens, params.seqused};
bool is_varlen = Varlen && params.cu_seqlens;
int offset_o = seqlen_info.offset;
int seqlen_o = seqlen_info.seqlen;
// Step 2: Write LSE from rmem -> gmem
auto thread_mma = tiled_mma.get_thread_slice(thread_idx);
// (MMA,MMA_M,MMA_K)
Tensor taccOcO = thread_mma.partition_C(cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})));
static_assert(decltype(size<0, 0>(taccOcO))::value == 2);
static_assert(decltype(size<0, 1>(taccOcO))::value == 2);
Tensor taccOcO_rowcol = make_tensor(taccOcO.data(), flash::convert_layout_acc_rowcol(taccOcO.layout()));
Tensor taccOcO_row = taccOcO_rowcol(_, _0{});
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumEpilogueThreads, Element>;
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset_o * get<0>(params.stride_LSE)), params.shape_LSE_packed, params.stride_LSE_packed)(_, bidh, !is_varlen ? bidb : 0, split_idx);
// if (thread_idx == 0) { printf("Before LSE write, m_block: %d, bidh: %d, bidb: %d, split_idx: %d, offset_o: %d, seqlen_o: %d\n", m_block, bidh, bidb, split_idx, offset_o, seqlen_o); print(mLSE); printf("\n"); }
if constexpr (!PackGQA) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
int const row = m_block * kBlockM + get<0>(taccOcO_row(mi));
if (get<1>(taccOcO_row(_0{})) == 0 && row < seqlen_o) { mLSE(row) = lse(mi); }
}
} else {
PackGQAt::store_LSE(mLSE, lse, tiled_mma, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
}
// Step 3: Write O from smem -> gmem
if constexpr (Use_TMA_O) {
Tensor mO = params.tma_store_O.get_tma_tensor(params.shape_O)(_, _, bidh, bidb, split_idx);
Tensor gO = local_tile(mO, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
auto block_tma_O = params.tma_store_O.get_slice(_0{});
Tensor tOgO = block_tma_O.partition_D(gO); // (TMA, TMA_M, TMA_K)
Tensor tOsO = block_tma_O.partition_S(sO); // (TMA, TMA_M, TMA_K)
int warp_idx_sync = __shfl_sync(0xffffffff, thread_idx / cutlass::NumThreadsPerWarp, 0);
if (warp_idx_sync == NumEpilogueThreads / cutlass::NumThreadsPerWarp - 1) {
cutlass::arch::NamedBarrier::sync(NumEpilogueThreads + cutlass::NumThreadsPerWarp,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
if (cute::elect_one_sync()) {
cute::copy(params.tma_store_O, tOsO, tOgO);
tma_store_arrive();
tma_store_wait<0>();
#pragma unroll
for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
shared_storage.pipelines.barrier_O.arrive(cta_id);
}
}
}
} else { // Don't use TMA in Varlen case since we don't want to overwrite the output of another sequence
Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset_o * get<0>(params.stride_O)), params.shape_O_packed, params.stride_O_packed)(_, _, bidh, !is_varlen ? bidb : 0, split_idx);
Tensor gO = local_tile(mO, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
// if (thread_idx == 0) { printf("Before O write, m_block: %d, bidh: %d, bidb: %d, split_idx: %d, offset_o: %d, seqlen_o: %d, mO_addr = %p, addr diff = %d\n", m_block, bidh, bidb, split_idx, offset_o, seqlen_o, mO.data(), reinterpret_cast<int>(&mO(0)) - reinterpret_cast<int>(params.ptr_O)); }
if constexpr (Use_smem) {
GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOsO = gmem_thr_copy_O.partition_S(sO); // ((Atom,AtomNum),ATOM_M,ATOM_N)
// Tensor tOsO = gmem_thr_copy_O.partition_S(sO_pi); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOrO = make_fragment_like(tOsO);
cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
if constexpr (ArchTag::kMinComputeCapability >= 90) {
cutlass::arch::fence_view_async_shared(); // ensure smem reads are done before next TMA to smem_v
#pragma unroll
for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
shared_storage.pipelines.barrier_O.arrive(cta_id);
}
}
if constexpr (!PackGQA) {
// (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tOcO = gmem_thr_copy_O.partition_D(cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})));
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOsO)));
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O); }
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, seqlen_o - m_block * kBlockM
);
} else {
// If PackGQA, we split the work of compute O_ptr among threads in the same row
PackGQAt::store_O(mO, tOrO, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
}
} else {
// We already arrived on barrier_O earlier
if constexpr (!PackGQA) {
static constexpr int kGmemElemsPerStoreDirect = 2;
cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element> gmem_copy_direct;
// Reshape acc from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
Tensor tOrO_rowcol = make_tensor(tOrO_out.data(), flash::convert_layout_acc_rowcol(tOrO.layout()));
Tensor tOrO_copy = cute::tiled_divide(tOrO_rowcol, Shape<_1, Int<kGmemElemsPerStoreDirect>>{});
Tensor tOgO = thread_mma.partition_C(gO);
Tensor tOgO_rowcol = make_tensor(tOgO.data(), flash::convert_layout_acc_rowcol(tOgO.layout()));
Tensor tOgO_copy = cute::tiled_divide(tOgO_rowcol, Shape<_1, Int<kGmemElemsPerStoreDirect>>{});
Tensor taccOcO_col = taccOcO_rowcol(_0{}, _);
#pragma unroll
for (int m = 0; m < size(taccOcO_row); ++m) {
if (get<0>(taccOcO_row(m)) < seqlen_o - m_block * kBlockM) {
#pragma unroll
for (int k = 0; k < size(taccOcO_col) / kGmemElemsPerStoreDirect; ++k) {
if (get<1>(taccOcO_col(k * kGmemElemsPerStoreDirect)) < get<1>(params.shape_O)) {
cute::copy(gmem_copy_direct, tOrO_copy(_, m, k), tOgO_copy(_, m, k));
}
}
}
}
} else {
PackGQAt::store_O_direct(mO, tOrO_out, tiled_mma, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
}
}
}
}
CUTLASS_DEVICE void
store_tail() {
// Don't need to do tma_store_wait<0>() here since we already did in @store
}
// Write 0 to output and -inf to LSE
template <bool Clear_O=true>
CUTLASS_DEVICE void
store_zero(
Params const& params,
int thread_idx,
cute::tuple<int32_t, int32_t, int32_t, int32_t> const& block_coord
) {
static constexpr int kBlockM = get<0>(TileShape_MNK{});
auto [m_block, bidh, bidb, split_idx] = block_coord;
flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{bidb, size<0>(params.shape_O), params.cu_seqlens, params.seqused};
bool const is_varlen = Varlen && params.cu_seqlens;
int offset_o = seqlen_info.offset;
int seqlen_o = seqlen_info.seqlen;
int qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset_o * get<0>(params.stride_O)), params.shape_O_packed, params.stride_O_packed)(_, _, bidh, !is_varlen ? bidb : 0, split_idx);
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset_o * get<0>(params.stride_LSE)), params.shape_LSE_packed, params.stride_LSE_packed)(_, bidh, !is_varlen ? bidb : 0, split_idx);
Tensor gLSE = local_tile(mLSE, Shape<Int<kBlockM>>{}, make_coord(m_block));
static_assert(kBlockM <= NumEpilogueThreads);
if (thread_idx < kBlockM) {
const int row = m_block * kBlockM + thread_idx;
if constexpr (!PackGQA) {
if (row < seqlen_o) { mLSE(row) = -INFINITY; }
} else {
if (row < seqlen_o * qhead_per_khead) {
int m_idx, h_idx;
m_idx = params.qhead_per_khead_divmod.divmod(h_idx, row);
// mLSE shape shape ((qhead_per_khead, seqlen_q)) and it's unhappy with just 1 "make_coord"
mLSE(make_coord(make_coord(h_idx, m_idx))) = -INFINITY;
}
}
}
if constexpr (!Clear_O) { return; }
GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOcO = gmem_thr_copy_O.partition_D(cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})));
if constexpr (!PackGQA) {
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOcO)));
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O); }
Tensor gO = local_tile(mO, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
Tensor tOrO = make_fragment_like(tOgO);
cute::clear(tOrO);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, seqlen_o - m_block * kBlockM
);
} else {
// If PackGQA, we split the work of compute O_ptr among threads in the same row
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumEpilogueThreads, Element>;
Tensor tOrO = make_tensor<Element>(make_shape(Shape<_1, Int<kGmemElemsPerStore>>{}, size<1>(tOcO), size<2>(tOcO)));
cute::clear(tOrO);
PackGQAt::store_O(mO, tOrO, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
}
}
};
} // namespace flash