Skip to content

Commit dffe1cd

Browse files
authored
create industry strength dataset (#640)
1 parent 47e95fc commit dffe1cd

File tree

1 file changed

+11
-3
lines changed

1 file changed

+11
-3
lines changed

README.md

+11-3
Original file line numberDiff line numberDiff line change
@@ -19,9 +19,10 @@ Additionally, we provide a [search toolkit](https://huggingface.co/spaces/zhimin
1919
| [📓 Data Science Notebook](#data-science-notebook) | [💾 Data Storage Optimisation](#data-storage-optimisation) | [💸 Data Stream Processing](#data-stream-processing) |
2020
| [💪 Deployment & Serving](#deployment-and-serving) | [📈 Evaluation & Monitoring](#evaluation-and-monitoring) | [🔍 Explainability & Fairness](#explainability-and-fairness) |
2121
| [🎁 Feature Store](#feature-store) | [🔴 Industry-strength Anomaly Detection](#industry-strength-anodet) | [👁️ Industry-strength Computer Vision](#industry-strength-cv) |
22-
| [🔥 Industry-strength Information Retrieval](#industry-strength-infret) | [🔠 Industry-strength Natural Language Processing](#industry-strength-nlp) | [🙌 Industry-strength Recommender System](#industry-strength-recsys) |
23-
| [🍕 Industry-strength Reinforcement Learning](#industry-strength-rl) | [📊 Industry-strength Visualisation](#industry-strength-visualisation) | [📅 Metadata Management](#metadata-management) |
24-
| [📜 Model, Data & Experiment Management](#model-data-and-experiment-management) | [🔩 Model Storage Optimisation](#model-storage-optimisation) | [🔏 Privacy & Robustness](#privacy-and-robustness) | [🏁 Training Orchestration](#training-orchestration) |
22+
| [🗂️ Industry-strength Dataset](#industry-strength-dataset) | [🔥 Industry-strength Information Retrieval](#industry-strength-infret) | [🔠 Industry-strength Natural Language Processing](#industry-strength-nlp) |
23+
| [🙌 Industry-strength Recommender System](#industry-strength-recsys) | [🍕 Industry-strength Reinforcement Learning](#industry-strength-rl) | [📊 Industry-strength Visualisation](#industry-strength-visualisation) |
24+
| [📅 Metadata Management](#metadata-management) | [📜 Model, Data & Experiment Management](#model-data-and-experiment-management) | [🔩 Model Storage Optimisation](#model-storage-optimisation) |
25+
| [🔏 Privacy & Robustness](#privacy-and-robustness) | [🏁 Training Orchestration](#training-orchestration) |
2526

2627
## Contributing to the list
2728

@@ -393,6 +394,13 @@ Please review our [CONTRIBUTING.md](https://github.com/EthicalML/awesome-product
393394
* [supervision](https://github.com/roboflow/supervision) ![](https://img.shields.io/github/stars/roboflow/supervision.svg?style=social) - Supervision is a Python library designed for efficient computer vision pipeline management, providing tools for annotation, visualization, and monitoring of models.
394395
* [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys) ![](https://img.shields.io/github/stars/NUS-HPC-AI-Lab/VideoSys.svg?style=social) - VideoSys supports many diffusion models with our various acceleration techniques, enabling these models to run faster and consume less memory.
395396

397+
## Industry Strength Dataset
398+
* [Dataset Viewer](https://github.com/EpistasisLab/pmlb) ![](https://img.shields.io/github/stars/EpistasisLab/pmlb.svg?style=social) - Dataset Viewer is a tool that enables users to interactively explore and analyze datasets by providing functionalities such as pagination, filtering, searching, and basic statistical insights.
399+
* [DiffusionDB](https://github.com/poloclub/diffusiondb) ![](https://img.shields.io/github/stars/poloclub/diffusiondb.svg?style=social) - DiffusionDB is a large-scale text-to-image prompt gallery dataset based on Stable Diffusion.
400+
* [PMLB](https://github.com/EpistasisLab/pmlb) ![](https://img.shields.io/github/stars/EpistasisLab/pmlb.svg?style=social) - PMLB is a large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms.
401+
* [SemanticKITTI](https://github.com/PRBonn/semantic-kitti-api) ![](https://img.shields.io/github/stars/PRBonn/semantic-kitti-api.svg?style=social) - SemanticKITTI helps developers to navigate, visualize, process, and evaluate results for point clouds and labels from the SemanticKITTI dataset.
402+
* [UltraFeedback](https://github.com/OpenBMB/UltraFeedback) ![](https://img.shields.io/github/stars/OpenBMB/UltraFeedback.svg?style=social) - UltraFeedback is a large-scale, fine-grained, diverse preference dataset, used for training powerful reward models and critic models.
403+
396404
## Industry Strength InfRet
397405
* [AutoRAG](https://github.com/Marker-Inc-Korea/AutoRAG) ![](https://img.shields.io/github/stars/Marker-Inc-Korea/AutoRAG.svg?style=social) - AutoRAG is a RAG AutoML tool for automatically finds an optimal RAG pipeline for your data.
398406
* [Cognita](https://github.com/truefoundry/cognita) ![](https://img.shields.io/github/stars/truefoundry/cognita.svg?style=social) - Cognita is a RAG framework for building modular and production-ready applications.

0 commit comments

Comments
 (0)