-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperimentUtils.wppl
208 lines (173 loc) · 7.76 KB
/
experimentUtils.wppl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Paths
var fs = webpplFs.node;
var makeRunDir = function(experimentName, runId) {
return "qaExperiments/" + experimentName + "/run" + runId;
}
var makeRunPath = function(experimentName, runId, dataLabel) {
var dir = makeRunDir(experimentName, runId);
var basePath = dir + "/" + experimentName + "-" + runId;
var basePathWithDataLabel = dataLabel ? basePath + '-' + dataLabel : basePath;
return {
dir: dir,
dataPath: basePathWithDataLabel + "-data.json",
paramsPath: basePath + "-params.json",
logPath: basePath + "-log.csv"
};
}
var makeQueryPath = function(experimentName, runId, queryId) {
var runDir = makeRunDir(experimentName, runId);
var queryDir = runDir + "/query" + queryId;
var basePath = queryDir + "/" + experimentName + "-" + runId + "-" + queryId;
return {
dir: queryDir,
queryPath: basePath + "-query.json",
resultPath: basePath + "-results.json",
expectedKLPath: runDir + "/expected-KL.csv"
};
}
var makeNetworkTestPath = function(experimentName, runId, networkName) {
var runDir = makeRunDir(experimentName, runId);
return runDir + "/nn-" + networkName + ".csv";
}
var makeKLStatPath = function(experimentName, runId) {
var runDir = makeRunDir(experimentName, runId);
return {
prior: runDir + "/expected-KL-prior.csv",
posterior: runDir + "/expected-KL.csv"
};
}
var makeNetworkCorrectnessSummary = function(experimentName, runId, networkName) {
var runDir = makeRunDir(experimentName, runId);
return runDir + "/nn-" + networkName + "-correctness-summary.csv";
}
var getExperimentNameAndRunId = function() {
var experimentPath = _.nth(process.argv, -2);
var experimentName = experimentPath.substring(experimentPath.lastIndexOf('/') + 1, experimentPath.lastIndexOf('.'));
var runId = _.parseInt(_.nth(process.argv, -1));
return {
name: experimentName,
runId: runId
}
}
var wordCount = function(utterance, includeFilters) {
if (includeFilters) {
return _.words(utterance, RegExp.call(null, includeFilters.join('|'), 'gi')).length;
}
return _.words(utterance).length;
}
// Generating data and results
var generateTrainingData = function(listOfLists, fn, numSamples, subsampleList) {
var recursiveMap = function(listOfLists, fn, numSamples, subsampleList, args /* internal*/) {
if (listOfLists.length === 0) {
var resultDist = apply(fn, args);
return repeat(numSamples, function() {
return snoc(args, sample(resultDist));
})
}
var samplesFromCurrentList = first(subsampleList);
var currentList = first(listOfLists);
var currentListSample =
!samplesFromCurrentList
? currentList
: _.sampleSize(currentList, samplesFromCurrentList);
return _.flatten(map(function(e) {
recursiveMap(rest(listOfLists), fn, numSamples, rest(subsampleList), snoc(args, e))
}, currentListSample), /*shallow*/ true)
};
if (subsampleList) {
assert.equal(listOfLists.length, subsampleList.length)
}
var subsampleListOrDefault = subsampleList || repeat(listOfLists.length, constF(0));
return recursiveMap(listOfLists, fn, numSamples, subsampleListOrDefault, []);
}
var readOrGenerateTrainingData = function(experimentName, runId, listOfLists, fn, numSamples, dataLabel, subsampleList) {
var runPath = makeRunPath(experimentName, runId, dataLabel);
if (fs.existsSync(runPath.dataPath)) {
return json.read(runPath.dataPath).data;
}
if (!fs.existsSync(runPath.dir)) {
webpplFs.mkdirp(runPath.dir);
}
var data = { samples: numSamples, data: generateTrainingData(listOfLists, fn, numSamples, subsampleList) };
json.write(runPath.dataPath, data);
return data.data;
}
var computeAveragePriorKL = function(experimentName, runId, groundTruthModel, learnedModel, queryAndAgentPairs) {
var KLDivs = mapIndexed(function(queryId, queryAndAgent) {
var queryPath = makeQueryPath(experimentName, runId, queryId);
// Hack to extract the facts from each world (since the domain is the same)
var query = map(function(q) { q.facts || q }, queryAndAgent.query);
var trueResult = apply(groundTruthModel[queryAndAgent.agent], queryAndAgent.query);
var learnedResult = apply(learnedModel[queryAndAgent.agent], queryAndAgent.query);
var KLDivergence = KL(trueResult, learnedResult);
if (!fs.existsSync(queryPath.dir)) {
webpplFs.mkdirp(queryPath.dir);
}
return KLDivergence;
}, queryAndAgentPairs);
var expectedKL = listMean(KLDivs)
webpplFs.write(makeKLStatPath(experimentName, runId).prior, expectedKL);
return expectedKL;
}
var serializeWorld = function(w) {
return "doctor(" + (w.facts.doctor.join(',') || "none") + "), " +
"teacher(" + (w.facts.teacher.join(',') || "none") + ")";
}
var computeAndWriteResults = function(experimentName, runId, groundTruthModel, learnedModel, queryAndAgentPairs) {
var queriesAndResults = mapIndexed(function(queryId, queryAndAgent) {
var queryPath = makeQueryPath(experimentName, runId, queryId);
// Hack to extract the facts from each world (since the domain is the same)
var query = map(function(q) { q.facts || q }, queryAndAgent.query);
var trueResult = apply(groundTruthModel[queryAndAgent.agent], queryAndAgent.query);
var learnedResult = apply(learnedModel[queryAndAgent.agent], queryAndAgent.query);
var KLDivergence = KL(trueResult, learnedResult);
// Write query and result before returning them
if (!fs.existsSync(queryPath.dir)) {
webpplFs.mkdirp(queryPath.dir);
}
json.write(queryPath.queryPath, query);
// Process the worlds in the result
if (queryAndAgent.agent === "L1" || queryAndAgent.agent === "L0") {
var trueResultNew = marginalize(trueResult, serializeWorld);
var learnedResultNew = marginalize(learnedResult, serializeWorld);
json.write(queryPath.resultPath, { trueResultNew, learnedResultNew, KLDivergence });
}
else {
json.write(queryPath.resultPath, { trueResult, learnedResult, KLDivergence });
}
return {
query,
trueResult,
learnedResult,
KLDivergence
}
}, queryAndAgentPairs);
var expectedKL = listMean(map(function(x) { x.KLDivergence }, queriesAndResults))
webpplFs.write(makeKLStatPath(experimentName, runId).posterior, expectedKL);
return queriesAndResults;
}
var groundTruthFns = {
and(args) { return args[0] * args[1] },
or(args) { return 1 - (1 - args[0]) * (1 - args[1]) },
not(args) { return 1 - args[0] }
}
var testNetworks = function(experimentName, runId, networks, tests) {
mapObject(function(networkName, test) {
var networkTestPath = makeNetworkTestPath(experimentName, runId, networkName);
var networkCorrectnessSummaryPath = makeNetworkCorrectnessSummary(experimentName, runId, networkName);
var network = networks[networkName];
var range = _.range.apply(_, test.range);
var results = Enumerate(function() {
var args = repeat(test.arity, function() { uniformDraw(range); });
return snoc(args, network.call(null, Vector(args)));
}).support();
webpplCsv.writeCSV(results, networkTestPath);
// compute distance
var distance = Math.sqrt(sum(map(function(r) {
var learned = r[r.length - 1];
var real = apply(groundTruthFns[networkName], [r]);
Math.pow(learned - real, 2)
}, results)))
webpplFs.write(networkCorrectnessSummaryPath, distance);
}, tests);
}