-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquestionsRSA.wppl
208 lines (184 loc) · 7.98 KB
/
questionsRSA.wppl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
var questionStartSymbol = "$WH";
var answerStartSymbol = "$S";
var KL = function(p, q){
return expectation(p, function(value) {
var scoreP = p.score(value);
var scoreQ = q.score(value);
return scoreP === -Infinity ? 0 : scoreP - scoreQ;
});
};
var utteranceDist = function(utterances, costFn, rationality) {
var probabilities = map(function(u) {
return Math.exp(-rationality * costFn(u));
}, utterances);
return Categorical({ ps: probabilities, vs: utterances });
}
var createVariationalModel = function(questions, answers, costFn, worldPrior, qudCandidates,
questionerRationality, answererRationality, grammarFn,
parametrizedNetworks, observationFn, opts, experimentName, runId, relearnParams,
preTrainModel) {
assert.ok(_.isNumber(answererRationality), "Pass in answererRationality")
var runPath = makeRunPath(experimentName, runId);
var modelFn = function() {
var specifiedNetworks = mapObject(function(k, v) {
var params = apply(v.paramConstructor, [k]);
return v.runner(params);
}, parametrizedNetworks)
var grammar = grammarFn.call(null, specifiedNetworks);
var parser = createParser(grammar, createParserWeights(grammar));
var model = createModel(questions, answers, costFn, worldPrior, qudCandidates,
questionerRationality, answererRationality, parser);
if (observationFn) {
observationFn(model);
}
return _.assign({ networks: specifiedNetworks }, model);
}
if (preTrainModel) {
preTrainModel(sample(SampleGuide(modelFn)));
}
if (!relearnParams && fs.existsSync(runPath.paramsPath)) {
// Restore previously learned params
var params = webpplFs.read(runPath.paramsPath);
setParams(deserializeParams(params));
}
else {
// learn new params
var optsWithFilenames = _.assign({
model: modelFn,
checkpointParamsFilename: runPath.paramsPath,
logProgressFilename: runPath.logPath
}, opts);
Optimize(optsWithFilenames);
}
return sample(SampleGuide(modelFn));
}
var createModel = function(questions, answers, costFn, worldPrior, qudCandidates,
questionerRationality, answererRationality, parser) {
assert.ok(_.isNumber(answererRationality), "Pass in answererRationality")
var questionsDist = utteranceDist(questions, costFn, questionerRationality);
var answersDist = utteranceDist(answers, costFn, answererRationality);
var marginalizeCached = cache(function(dist, qudName) {
var qud = qudCandidates[qudName];
return marginalize(dist, qud);
})
var interpretAnswer = cache(function(answer) {
var answerMeaning = parser(answer, answerStartSymbol);
return Infer({method: 'enumerate'}, function() {
var world = sample(worldPrior);
factor(Math.log(answerMeaning(world)));
return world;
});
})
var informationGainFn = function(answerer) {
var interpretAnswerPragmatic = cache(function(question, answer) {
return Infer({ method: 'enumerate' }, function() {
var world = sample(worldPrior);
observe(answerer(question, world), answer);
return world;
})
})
return cache(function(question, qudName, trueWorld) {
var prior = marginalizeCached(worldPrior, qudName);
var possibleAnswers = answerer(question, trueWorld);
return expectation(possibleAnswers, function(answer) {
var posterior = marginalizeCached(interpretAnswerPragmatic(question, answer), qudName);
return KL(posterior, prior);
});
})
}
var similarity = cache(function(question, trueWorld, otherWorld, domain) {
// trueWorldTruthValues and otherWorldTruthValues are each distributions
// over subsets of the domain. Compute KL between them using factorization
// for sequence of independent bernoulli trials.
var questionMeaning = parser(question, questionStartSymbol);
var trueWorldTruthValues = questionMeaning(trueWorld);
var otherWorldTruthValues = questionMeaning(otherWorld);
return Math.exp(-sum(map2(function(p, q) {
var positiveTerm = p === 0 ? 0 : p * Math.log(p / q);
var negativeTerm = p === 1 ? 0 : (1 - p) * Math.log((1 - p) / (1 - q));
return positiveTerm + negativeTerm;
}, trueWorldTruthValues, otherWorldTruthValues)));
})
var answerQualityForQuestion = cache(function(answer, question, trueWorld) {
// Using soft similarity semantics
var consistentWorlds = interpretAnswer(answer);
return Math.log(expectation(consistentWorlds, function(w) {
assert.ok(w.domain.length === trueWorld.domain.length)
return similarity(question, trueWorld, w, trueWorld.domain);
}))
}, /*maxSize*/ 1.75e4)
var answerQualityForQud = cache(function(answer, qudName, trueWorld) {
// Using hard partition semantics
var consistentWorlds = interpretAnswer(answer);
var qud = qudCandidates[qudName];
return marginalizeCached(consistentWorlds, qudName).score(qud(trueWorld));
})
var explicitAnswerer = cache(function(question, trueWorld) {
return Infer({method: 'enumerate'}, function() {
var answer = sample(answersDist);
var answerMeaning = parser(answer, answerStartSymbol);
factor(answerQualityForQuestion(answer, question, trueWorld)
* answererRationality);
return answer;
})
})
var questioner = function(answerer) {
var informationGain = informationGainFn(answerer);
return cache(function(qudIndex) {
return Infer({method: 'enumerate'}, function() {
var question = sample(questionsDist)
var expectedInformationGain = expectation(worldPrior, function(world) {
return informationGain(question, qudIndex, world);
});
factor(expectedInformationGain * questionerRationality);
return question;
});
})
}
var explicitQuestioner = questioner(explicitAnswerer);
var inferGoal = cache(function(question) {
Infer({ method: 'enumerate' }, function() {
var qudName = uniformDraw(_.keys(qudCandidates));
observe(explicitQuestioner(qudName), question);
return qudName;
})
})
var pragmaticAnswerer = cache(function(question, trueWorld) {
return Infer({method: 'enumerate'}, function() {
var answer = sample(answersDist)
var qudName = sample(inferGoal(question));
factor(answerQualityForQud(answer, qudName, trueWorld) * answererRationality);
return answer;
});
})
var pragmaticQuestioner = questioner(pragmaticAnswerer);
// Standard RSA
var literalListener = function(utterance) {
return interpretAnswer(utterance);
}
var speaker = function(world) {
return Infer({ method: 'enumerate' }, function() {
var utterance = sample(answersDist);
var L = literalListener(utterance);
factor(L.score(world) * answererRationality);
return utterance;
})
}
var pragmaticListener = function(utterance) {
return Infer({ method: 'enumerate' }, function() {
var world = sample(worldPrior);
var S = speaker(world);
factor(S.score(utterance));
return world;
})
}
return {
Q1: explicitQuestioner,
A1: explicitAnswerer,
Q2: pragmaticQuestioner,
A2: pragmaticAnswerer,
L0: literalListener,
S1: speaker,
L1: pragmaticListener
};
}