-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathdecode_np.py
273 lines (213 loc) · 9.88 KB
/
decode_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# -*- coding: utf-8 -*-
import random
import colorsys
import cv2
import threading
import os
import numpy as np
class Decode(object):
def __init__(self, obj_threshold, nms_threshold, input_shape, _yolo, all_classes):
self._t1 = obj_threshold
self._t2 = nms_threshold
self.input_shape = input_shape
self.all_classes = all_classes
self.num_classes = len(self.all_classes)
self._yolo = _yolo
# 处理一张图片
def detect_image(self, image, draw_image):
pimage = self.process_image(np.copy(image))
boxes, scores, classes = self.predict(pimage, image.shape)
if boxes is not None and draw_image:
self.draw(image, boxes, scores, classes)
return image, boxes, scores, classes
# 多线程后处理
def multi_thread_post(self, batch_img, outs, i, draw_image, result_image, result_boxes, result_scores, result_classes):
a1 = np.reshape(outs[0][i], (1, self.input_shape[0] // 32, self.input_shape[1] // 32, 3, 5 + self.num_classes))
a2 = np.reshape(outs[1][i], (1, self.input_shape[0] // 16, self.input_shape[1] // 16, 3, 5 + self.num_classes))
a3 = np.reshape(outs[2][i], (1, self.input_shape[0] // 8, self.input_shape[1] // 8, 3, 5 + self.num_classes))
boxes, scores, classes = self._yolo_out([a1, a2, a3], batch_img[i].shape)
if boxes is not None and draw_image:
self.draw(batch_img[i], boxes, scores, classes)
result_image[i] = batch_img[i]
result_boxes[i] = boxes
result_scores[i] = scores
result_classes[i] = classes
# 处理一批图片
def detect_batch(self, batch_img, draw_image):
batch_size = len(batch_img)
result_image, result_boxes, result_scores, result_classes = [None] * batch_size, [None] * batch_size, [None] * batch_size, [None] * batch_size
batch = []
for image in batch_img:
pimage = self.process_image(np.copy(image))
batch.append(pimage)
batch = np.concatenate(batch, axis=0)
outs = self._yolo.predict(batch)
# 多线程
threads = []
for i in range(batch_size):
t = threading.Thread(target=self.multi_thread_post, args=(
batch_img, outs, i, draw_image, result_image, result_boxes, result_scores, result_classes))
threads.append(t)
t.start()
# 等待所有线程任务结束。
for t in threads:
t.join()
return result_image, result_boxes, result_scores, result_classes
# 处理视频
def detect_video(self, video):
video_path = os.path.join("videos", "test", video)
camera = cv2.VideoCapture(video_path)
cv2.namedWindow("detection", cv2.WINDOW_AUTOSIZE)
# Prepare for saving the detected video
sz = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fourcc = cv2.VideoWriter_fourcc(*'mpeg')
vout = cv2.VideoWriter()
vout.open(os.path.join("videos", "res", video), fourcc, 20, sz, True)
while True:
res, frame = camera.read()
if not res:
break
image = self.detect_image(frame)
cv2.imshow("detection", image)
# Save the video frame by frame
vout.write(image)
if cv2.waitKey(110) & 0xff == 27:
break
vout.release()
camera.release()
def draw(self, image, boxes, scores, classes):
image_h, image_w, _ = image.shape
# 定义颜色
hsv_tuples = [(1.0 * x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
random.seed(0)
random.shuffle(colors)
random.seed(None)
for box, score, cl in zip(boxes, scores, classes):
x0, y0, x1, y1 = box
left = max(0, np.floor(x0 + 0.5).astype(int))
top = max(0, np.floor(y0 + 0.5).astype(int))
right = min(image.shape[1], np.floor(x1 + 0.5).astype(int))
bottom = min(image.shape[0], np.floor(y1 + 0.5).astype(int))
bbox_color = colors[cl]
# bbox_thick = 1 if min(image_h, image_w) < 400 else 2
bbox_thick = 1
cv2.rectangle(image, (left, top), (right, bottom), bbox_color, bbox_thick)
bbox_mess = '%s: %.2f' % (self.all_classes[cl], score)
t_size = cv2.getTextSize(bbox_mess, 0, 0.5, thickness=1)[0]
cv2.rectangle(image, (left, top), (left + t_size[0], top - t_size[1] - 3), bbox_color, -1)
cv2.putText(image, bbox_mess, (left, top - 2), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 0, 0), 1, lineType=cv2.LINE_AA)
def process_image(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
scale_x = float(self.input_shape[1]) / w
scale_y = float(self.input_shape[0]) / h
img = cv2.resize(img, None, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_CUBIC)
pimage = img.astype(np.float32) / 255.
pimage = np.expand_dims(pimage, axis=0)
return pimage
def predict(self, image, shape):
outs = self._yolo.predict(image)
# numpy后处理
a1 = np.reshape(outs[0], (1, self.input_shape[0]//32, self.input_shape[1]//32, 3, 5+self.num_classes))
a2 = np.reshape(outs[1], (1, self.input_shape[0]//16, self.input_shape[1]//16, 3, 5+self.num_classes))
a3 = np.reshape(outs[2], (1, self.input_shape[0]//8, self.input_shape[1]//8, 3, 5+self.num_classes))
boxes, scores, classes = self._yolo_out([a1, a2, a3], shape)
return boxes, scores, classes
def _sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def _process_feats(self, out, anchors, mask):
grid_h, grid_w, num_boxes = map(int, out.shape[1: 4])
anchors = [anchors[i] for i in mask]
anchors_tensor = np.array(anchors).reshape(1, 1, len(anchors), 2)
# Reshape to batch, height, width, num_anchors, box_params.
out = out[0]
box_xy = self._sigmoid(out[..., :2])
box_wh = np.exp(out[..., 2:4])
box_wh = box_wh * anchors_tensor
box_confidence = self._sigmoid(out[..., 4])
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = self._sigmoid(out[..., 5:])
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy /= (grid_w, grid_h)
box_wh /= self.input_shape
box_xy -= (box_wh / 2.) # 坐标格式是左上角xy加矩形宽高wh,xywh都除以图片边长归一化了。
boxes = np.concatenate((box_xy, box_wh), axis=-1)
return boxes, box_confidence, box_class_probs
def _filter_boxes(self, boxes, box_confidences, box_class_probs):
box_scores = box_confidences * box_class_probs
box_classes = np.argmax(box_scores, axis=-1)
box_class_scores = np.max(box_scores, axis=-1)
pos = np.where(box_class_scores >= self._t1)
boxes = boxes[pos]
classes = box_classes[pos]
scores = box_class_scores[pos]
return boxes, classes, scores
def _nms_boxes(self, boxes, scores):
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2]
h = boxes[:, 3]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 1)
h1 = np.maximum(0.0, yy2 - yy1 + 1)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= self._t2)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def _yolo_out(self, outs, shape):
masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors = [[12, 16], [19, 36], [40, 28], [36, 75], [76, 55],
[72, 146], [142, 110], [192, 243], [459, 401]]
boxes, classes, scores = [], [], []
for out, mask in zip(outs, masks):
b, c, s = self._process_feats(out, anchors, mask)
b, c, s = self._filter_boxes(b, c, s)
boxes.append(b)
classes.append(c)
scores.append(s)
boxes = np.concatenate(boxes)
classes = np.concatenate(classes)
scores = np.concatenate(scores)
# boxes坐标格式是左上角xy加矩形宽高wh,xywh都除以图片边长归一化了。
# Scale boxes back to original image shape.
w, h = shape[1], shape[0]
image_dims = [w, h, w, h]
boxes = boxes * image_dims
nboxes, nclasses, nscores = [], [], []
for c in set(classes):
inds = np.where(classes == c)
b = boxes[inds]
c = classes[inds]
s = scores[inds]
keep = self._nms_boxes(b, s)
nboxes.append(b[keep])
nclasses.append(c[keep])
nscores.append(s[keep])
if not nclasses and not nscores:
return None, None, None
boxes = np.concatenate(nboxes)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)
# 换坐标
boxes[:, [2, 3]] = boxes[:, [0, 1]] + boxes[:, [2, 3]]
return boxes, scores, classes