forked from microsoft/semantic-kernel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAgentAvailableAsMCPToolSample.cs
66 lines (55 loc) · 3.05 KB
/
AgentAvailableAsMCPToolSample.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Copyright (c) Microsoft. All rights reserved.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.OpenAI;
using ModelContextProtocol.Client;
namespace MCPClient.Samples;
/// <summary>
/// Demonstrates how to use SK agent available as MCP tool.
/// </summary>
internal sealed class AgentAvailableAsMCPToolSample : BaseSample
{
/// <summary>
/// Demonstrates how to use SK agent available as MCP tool.
/// The code in this method:
/// 1. Creates an MCP client.
/// 2. Retrieves the list of tools provided by the MCP server.
/// 3. Creates a kernel and registers the MCP tools as Kernel functions.
/// 4. Sends the prompt to AI model together with the MCP tools represented as Kernel functions.
/// 5. The AI model calls the `Agents_SalesAssistant` function, which calls the MCP tool that calls the SK agent on the server.
/// 6. The agent calls the `OrderProcessingUtils-PlaceOrder` function to place the order for the `Grande Mug`.
/// 7. The agent calls the `OrderProcessingUtils-ReturnOrder` function to return the `Wide Rim Mug`.
/// 8. The agent summarizes the transactions and returns the result as part of the `Agents_SalesAssistant` function call.
/// 9. Having received the result from the `Agents_SalesAssistant`, the AI model returns the answer to the prompt.
/// </summary>
public static async Task RunAsync()
{
Console.WriteLine($"Running the {nameof(AgentAvailableAsMCPToolSample)} sample.");
// Create an MCP client
await using IMcpClient mcpClient = await CreateMcpClientAsync();
// Retrieve and display the list provided by the MCP server
IList<McpClientTool> tools = await mcpClient.ListToolsAsync();
DisplayTools(tools);
// Create a kernel and register the MCP tools
Kernel kernel = CreateKernelWithChatCompletionService();
kernel.Plugins.AddFromFunctions("Tools", tools.Select(aiFunction => aiFunction.AsKernelFunction()));
// Enable automatic function calling
OpenAIPromptExecutionSettings executionSettings = new()
{
Temperature = 0,
FunctionChoiceBehavior = FunctionChoiceBehavior.Auto(options: new() { RetainArgumentTypes = true })
};
string prompt = "I'd like to order the 'Grande Mug' and return the 'Wide Rim Mug' bought last week.";
Console.WriteLine(prompt);
// Execute a prompt using the MCP tools. The AI model will automatically call the appropriate MCP tools to answer the prompt.
FunctionResult result = await kernel.InvokePromptAsync(prompt, new(executionSettings));
Console.WriteLine(result);
Console.WriteLine();
// The expected output is: The order for the "Grande Mug" has been successfully placed.
// Additionally, the return process for the "Wide Rim Mug" has been successfully initiated.
// If you have any further questions or need assistance with anything else, feel free to ask!
}
}