-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathapp.py
373 lines (298 loc) · 11.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
from uuid import uuid4
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from typing import Annotated, Literal, Sequence
from typing_extensions import TypedDict
from functools import partial
from langchain import hub
from langchain_core.messages import BaseMessage, HumanMessage
from langgraph.graph.message import add_messages
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from pydantic import BaseModel, Field
from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode, tools_condition
import streamlit as st
st.set_page_config(page_title="AI Blog Search", page_icon=":mag_right:")
st.header(":blue[Agentic RAG with LangGraph:] :green[AI Blog Search]")
# Initialize session state variables if they don't exist
if 'qdrant_host' not in st.session_state:
st.session_state.qdrant_host = ""
if 'qdrant_api_key' not in st.session_state:
st.session_state.qdrant_api_key = ""
if 'gemini_api_key' not in st.session_state:
st.session_state.gemini_api_key = ""
def set_sidebar():
"""Setup sidebar for API keys and configuration."""
with st.sidebar:
st.subheader("API Configuration")
qdrant_host = st.text_input("Enter your Qdrant Host URL:", type="password")
qdrant_api_key = st.text_input("Enter your Qdrant API key:", type="password")
gemini_api_key = st.text_input("Enter your Gemini API key:", type="password")
if st.button("Done"):
if qdrant_host and qdrant_api_key and gemini_api_key:
st.session_state.qdrant_host = qdrant_host
st.session_state.qdrant_api_key = qdrant_api_key
st.session_state.gemini_api_key = gemini_api_key
st.success("API keys saved!")
else:
st.warning("Please fill all API fields")
def initialize_components():
"""Initialize components that require API keys"""
if not all([st.session_state.qdrant_host,
st.session_state.qdrant_api_key,
st.session_state.gemini_api_key]):
return None, None, None
try:
# Initialize embedding model with API key
embedding_model = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=st.session_state.gemini_api_key
)
# Initialize Qdrant client
client = QdrantClient(
st.session_state.qdrant_host,
api_key=st.session_state.qdrant_api_key
)
# Initialize vector store
db = QdrantVectorStore(
client=client,
collection_name="qdrant_db",
embedding=embedding_model
)
return embedding_model, client, db
except Exception as e:
st.error(f"Initialization error: {str(e)}")
return None, None, None
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], add_messages]
# Edges
## Check Relevance
def grade_documents(state) -> Literal["generate", "rewrite"]:
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (messages): The current state
Returns:
str: A decision for whether the documents are relevant or not
"""
print("---CHECK RELEVANCE---")
# Data model
class grade(BaseModel):
"""Binary score for relevance check."""
binary_score: str = Field(description="Relevance score 'yes' or 'no'")
# LLM
model = ChatGoogleGenerativeAI(api_key=st.session_state.gemini_api_key, temperature=0, model="gemini-2.0-flash", streaming=True)
# LLM with tool and validation
llm_with_tool = model.with_structured_output(grade)
# Prompt
prompt = PromptTemplate(
template="""You are a grader assessing relevance of a retrieved document to a user question. \n
Here is the retrieved document: \n\n {context} \n\n
Here is the user question: {question} \n
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
input_variables=["context", "question"],
)
# Chain
chain = prompt | llm_with_tool
messages = state["messages"]
last_message = messages[-1]
question = messages[0].content
docs = last_message.content
scored_result = chain.invoke({"question": question, "context": docs})
score = scored_result.binary_score
if score == "yes":
print("---DECISION: DOCS RELEVANT---")
return "generate"
else:
print("---DECISION: DOCS NOT RELEVANT---")
print(score)
return "rewrite"
# Nodes
## agent node
def agent(state, tools):
"""
Invokes the agent model to generate a response based on the current state. Given
the question, it will decide to retrieve using the retriever tool, or simply end.
Args:
state (messages): The current state
Returns:
dict: The updated state with the agent response appended to messages
"""
print("---CALL AGENT---")
messages = state["messages"]
model = ChatGoogleGenerativeAI(api_key=st.session_state.gemini_api_key, temperature=0, streaming=True, model="gemini-2.0-flash")
model = model.bind_tools(tools)
response = model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
## rewrite node
def rewrite(state):
"""
Transform the query to produce a better question.
Args:
state (messages): The current state
Returns:
dict: The updated state with re-phrased question
"""
print("---TRANSFORM QUERY---")
messages = state["messages"]
question = messages[0].content
msg = [
HumanMessage(
content=f""" \n
Look at the input and try to reason about the underlying semantic intent / meaning. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate an improved question: """,
)
]
# Grader
model = ChatGoogleGenerativeAI(api_key=st.session_state.gemini_api_key, temperature=0, model="gemini-2.0-flash", streaming=True)
response = model.invoke(msg)
return {"messages": [response]}
## generate node
def generate(state):
"""
Generate answer
Args:
state (messages): The current state
Returns:
dict: The updated state with re-phrased question
"""
print("---GENERATE---")
messages = state["messages"]
question = messages[0].content
last_message = messages[-1]
docs = last_message.content
# Initialize a Chat Prompt Template
prompt_template = hub.pull("rlm/rag-prompt")
# Initialize a Generator (i.e. Chat Model)
chat_model = ChatGoogleGenerativeAI(api_key=st.session_state.gemini_api_key, model="gemini-2.0-flash", temperature=0, streaming=True)
# Initialize a Output Parser
output_parser = StrOutputParser()
# RAG Chain
rag_chain = prompt_template | chat_model | output_parser
response = rag_chain.invoke({"context": docs, "question": question})
return {"messages": [response]}
# graph function
def get_graph(retriever_tool):
tools = [retriever_tool] # Create tools list here
# Define a new graph
workflow = StateGraph(AgentState)
# Use partial to pass tools to the agent function
workflow.add_node("agent", partial(agent, tools=tools))
# Rest of the graph setup remains the same
retrieve = ToolNode(tools)
workflow.add_node("retrieve", retrieve)
workflow.add_node("rewrite", rewrite) # Re-writing the question
workflow.add_node(
"generate", generate
) # Generating a response after we know the documents are relevant
# Call agent node to decide to retrieve or not
workflow.add_edge(START, "agent")
# Decide whether to retrieve
workflow.add_conditional_edges(
"agent",
# Assess agent decision
tools_condition,
{
# Translate the condition outputs to nodes in our graph
"tools": "retrieve",
END: END,
},
)
# Edges taken after the `action` node is called.
workflow.add_conditional_edges(
"retrieve",
# Assess agent decision
grade_documents,
)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
# Compile
graph = workflow.compile()
return graph
def generate_message(graph, inputs):
generated_message = ""
for output in graph.stream(inputs):
for key, value in output.items():
if key == "generate" and isinstance(value, dict):
generated_message = value.get("messages", [""])[0]
return generated_message
def add_documents_to_qdrant(url, db):
try:
docs = WebBaseLoader(url).load()
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=100, chunk_overlap=50
)
doc_chunks = text_splitter.split_documents(docs)
uuids = [str(uuid4()) for _ in range(len(doc_chunks))]
db.add_documents(documents=doc_chunks, ids=uuids)
return True
except Exception as e:
st.error(f"Error adding documents: {str(e)}")
return False
def main():
set_sidebar()
# Check if API keys are set
if not all([st.session_state.qdrant_host,
st.session_state.qdrant_api_key,
st.session_state.gemini_api_key]):
st.warning("Please configure your API keys in the sidebar first")
return
# Initialize components
embedding_model, client, db = initialize_components()
if not all([embedding_model, client, db]):
return
# Initialize retriever and tools
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retriever_tool = create_retriever_tool(
retriever,
"retrieve_blog_posts",
"Search and return information about blog posts on LLMs, LLM agents, prompt engineering, and adversarial attacks on LLMs.",
)
tools = [retriever_tool]
# URL input section
url = st.text_input(
":link: Paste the blog link:",
placeholder="e.g., https://lilianweng.github.io/posts/2023-06-23-agent/"
)
if st.button("Enter URL"):
if url:
with st.spinner("Processing documents..."):
if add_documents_to_qdrant(url, db):
st.success("Documents added successfully!")
else:
st.error("Failed to add documents")
else:
st.warning("Please enter a URL")
# Query section
graph = get_graph(retriever_tool)
query = st.text_area(
":bulb: Enter your query about the blog post:",
placeholder="e.g., What does Lilian Weng say about the types of agent memory?"
)
if st.button("Submit Query"):
if not query:
st.warning("Please enter a query")
return
inputs = {"messages": [HumanMessage(content=query)]}
with st.spinner("Generating response..."):
try:
response = generate_message(graph, inputs)
st.write(response)
except Exception as e:
st.error(f"Error generating response: {str(e)}")
st.markdown("---")
st.write("Built with :blue-background[LangChain] | :blue-background[LangGraph] by [Charan](https://www.linkedin.com/in/codewithcharan/)")
if __name__ == "__main__":
main()