|
| 1 | +import cv2 |
| 2 | +import math |
| 3 | +import numpy as np |
| 4 | +import os |
| 5 | +import os.path as osp |
| 6 | +import random |
| 7 | +import time |
| 8 | +import torch |
| 9 | +from torch.utils import data as data |
| 10 | + |
| 11 | +from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels |
| 12 | +from basicsr.data.transforms import augment |
| 13 | +from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
| 14 | +from basicsr.utils.registry import DATASET_REGISTRY |
| 15 | + |
| 16 | + |
| 17 | +@DATASET_REGISTRY.register(suffix='basicsr') |
| 18 | +class RealESRGANDataset(data.Dataset): |
| 19 | + """Dataset used for Real-ESRGAN model: |
| 20 | + Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. |
| 21 | +
|
| 22 | + It loads gt (Ground-Truth) images, and augments them. |
| 23 | + It also generates blur kernels and sinc kernels for generating low-quality images. |
| 24 | + Note that the low-quality images are processed in tensors on GPUS for faster processing. |
| 25 | +
|
| 26 | + Args: |
| 27 | + opt (dict): Config for train datasets. It contains the following keys: |
| 28 | + dataroot_gt (str): Data root path for gt. |
| 29 | + meta_info (str): Path for meta information file. |
| 30 | + io_backend (dict): IO backend type and other kwarg. |
| 31 | + use_hflip (bool): Use horizontal flips. |
| 32 | + use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). |
| 33 | + Please see more options in the codes. |
| 34 | + """ |
| 35 | + |
| 36 | + def __init__(self, opt): |
| 37 | + super(RealESRGANDataset, self).__init__() |
| 38 | + self.opt = opt |
| 39 | + self.file_client = None |
| 40 | + self.io_backend_opt = opt['io_backend'] |
| 41 | + self.gt_folder = opt['dataroot_gt'] |
| 42 | + |
| 43 | + # file client (lmdb io backend) |
| 44 | + if self.io_backend_opt['type'] == 'lmdb': |
| 45 | + self.io_backend_opt['db_paths'] = [self.gt_folder] |
| 46 | + self.io_backend_opt['client_keys'] = ['gt'] |
| 47 | + if not self.gt_folder.endswith('.lmdb'): |
| 48 | + raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}") |
| 49 | + with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: |
| 50 | + self.paths = [line.split('.')[0] for line in fin] |
| 51 | + else: |
| 52 | + # disk backend with meta_info |
| 53 | + # Each line in the meta_info describes the relative path to an image |
| 54 | + with open(self.opt['meta_info']) as fin: |
| 55 | + paths = [line.strip().split(' ')[0] for line in fin] |
| 56 | + self.paths = [os.path.join(self.gt_folder, v) for v in paths] |
| 57 | + |
| 58 | + # blur settings for the first degradation |
| 59 | + self.blur_kernel_size = opt['blur_kernel_size'] |
| 60 | + self.kernel_list = opt['kernel_list'] |
| 61 | + self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability |
| 62 | + self.blur_sigma = opt['blur_sigma'] |
| 63 | + self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels |
| 64 | + self.betap_range = opt['betap_range'] # betap used in plateau blur kernels |
| 65 | + self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters |
| 66 | + |
| 67 | + # blur settings for the second degradation |
| 68 | + self.blur_kernel_size2 = opt['blur_kernel_size2'] |
| 69 | + self.kernel_list2 = opt['kernel_list2'] |
| 70 | + self.kernel_prob2 = opt['kernel_prob2'] |
| 71 | + self.blur_sigma2 = opt['blur_sigma2'] |
| 72 | + self.betag_range2 = opt['betag_range2'] |
| 73 | + self.betap_range2 = opt['betap_range2'] |
| 74 | + self.sinc_prob2 = opt['sinc_prob2'] |
| 75 | + |
| 76 | + # a final sinc filter |
| 77 | + self.final_sinc_prob = opt['final_sinc_prob'] |
| 78 | + |
| 79 | + self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21 |
| 80 | + # TODO: kernel range is now hard-coded, should be in the configure file |
| 81 | + self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect |
| 82 | + self.pulse_tensor[10, 10] = 1 |
| 83 | + |
| 84 | + def __getitem__(self, index): |
| 85 | + if self.file_client is None: |
| 86 | + self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
| 87 | + |
| 88 | + # -------------------------------- Load gt images -------------------------------- # |
| 89 | + # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. |
| 90 | + gt_path = self.paths[index] |
| 91 | + # avoid errors caused by high latency in reading files |
| 92 | + retry = 3 |
| 93 | + while retry > 0: |
| 94 | + try: |
| 95 | + img_bytes = self.file_client.get(gt_path, 'gt') |
| 96 | + except (IOError, OSError) as e: |
| 97 | + logger = get_root_logger() |
| 98 | + logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}') |
| 99 | + # change another file to read |
| 100 | + index = random.randint(0, self.__len__()) |
| 101 | + gt_path = self.paths[index] |
| 102 | + time.sleep(1) # sleep 1s for occasional server congestion |
| 103 | + else: |
| 104 | + break |
| 105 | + finally: |
| 106 | + retry -= 1 |
| 107 | + img_gt = imfrombytes(img_bytes, float32=True) |
| 108 | + |
| 109 | + # -------------------- Do augmentation for training: flip, rotation -------------------- # |
| 110 | + img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot']) |
| 111 | + |
| 112 | + # crop or pad to 400 |
| 113 | + # TODO: 400 is hard-coded. You may change it accordingly |
| 114 | + h, w = img_gt.shape[0:2] |
| 115 | + crop_pad_size = 400 |
| 116 | + # pad |
| 117 | + if h < crop_pad_size or w < crop_pad_size: |
| 118 | + pad_h = max(0, crop_pad_size - h) |
| 119 | + pad_w = max(0, crop_pad_size - w) |
| 120 | + img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101) |
| 121 | + # crop |
| 122 | + if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size: |
| 123 | + h, w = img_gt.shape[0:2] |
| 124 | + # randomly choose top and left coordinates |
| 125 | + top = random.randint(0, h - crop_pad_size) |
| 126 | + left = random.randint(0, w - crop_pad_size) |
| 127 | + img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...] |
| 128 | + |
| 129 | + # ------------------------ Generate kernels (used in the first degradation) ------------------------ # |
| 130 | + kernel_size = random.choice(self.kernel_range) |
| 131 | + if np.random.uniform() < self.opt['sinc_prob']: |
| 132 | + # this sinc filter setting is for kernels ranging from [7, 21] |
| 133 | + if kernel_size < 13: |
| 134 | + omega_c = np.random.uniform(np.pi / 3, np.pi) |
| 135 | + else: |
| 136 | + omega_c = np.random.uniform(np.pi / 5, np.pi) |
| 137 | + kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
| 138 | + else: |
| 139 | + kernel = random_mixed_kernels( |
| 140 | + self.kernel_list, |
| 141 | + self.kernel_prob, |
| 142 | + kernel_size, |
| 143 | + self.blur_sigma, |
| 144 | + self.blur_sigma, [-math.pi, math.pi], |
| 145 | + self.betag_range, |
| 146 | + self.betap_range, |
| 147 | + noise_range=None) |
| 148 | + # pad kernel |
| 149 | + pad_size = (21 - kernel_size) // 2 |
| 150 | + kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) |
| 151 | + |
| 152 | + # ------------------------ Generate kernels (used in the second degradation) ------------------------ # |
| 153 | + kernel_size = random.choice(self.kernel_range) |
| 154 | + if np.random.uniform() < self.opt['sinc_prob2']: |
| 155 | + if kernel_size < 13: |
| 156 | + omega_c = np.random.uniform(np.pi / 3, np.pi) |
| 157 | + else: |
| 158 | + omega_c = np.random.uniform(np.pi / 5, np.pi) |
| 159 | + kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
| 160 | + else: |
| 161 | + kernel2 = random_mixed_kernels( |
| 162 | + self.kernel_list2, |
| 163 | + self.kernel_prob2, |
| 164 | + kernel_size, |
| 165 | + self.blur_sigma2, |
| 166 | + self.blur_sigma2, [-math.pi, math.pi], |
| 167 | + self.betag_range2, |
| 168 | + self.betap_range2, |
| 169 | + noise_range=None) |
| 170 | + |
| 171 | + # pad kernel |
| 172 | + pad_size = (21 - kernel_size) // 2 |
| 173 | + kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) |
| 174 | + |
| 175 | + # ------------------------------------- the final sinc kernel ------------------------------------- # |
| 176 | + if np.random.uniform() < self.opt['final_sinc_prob']: |
| 177 | + kernel_size = random.choice(self.kernel_range) |
| 178 | + omega_c = np.random.uniform(np.pi / 3, np.pi) |
| 179 | + sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) |
| 180 | + sinc_kernel = torch.FloatTensor(sinc_kernel) |
| 181 | + else: |
| 182 | + sinc_kernel = self.pulse_tensor |
| 183 | + |
| 184 | + # BGR to RGB, HWC to CHW, numpy to tensor |
| 185 | + img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] |
| 186 | + kernel = torch.FloatTensor(kernel) |
| 187 | + kernel2 = torch.FloatTensor(kernel2) |
| 188 | + |
| 189 | + return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path} |
| 190 | + return return_d |
| 191 | + |
| 192 | + def __len__(self): |
| 193 | + return len(self.paths) |
0 commit comments