- Faster R-CNN
- Faster R-CNN FPN ResNet50
- Faster R-CNN FPN ResNet101
- Light-Head R-CNN ResNet101
- SSD300
- SSD512
- YOLOv2
- YOLOv2 tiny
- YOLOv3
For the details, please check the documents and examples of each model.
Model | Train dataset | FPS | mAP (PASCAL VOC2007 metric) |
---|---|---|---|
Faster R-CNN | VOC2007 trainval | 70.6 % | |
Faster R-CNN | VOC2007&2012 trainval | 74.7 % | |
SSD300 | VOC2007&2012 trainval | 77.8 % | |
SSD512 | VOC2007&2012 trainval | 79.7 % | |
YOLOv2 | VOC2007&2012 trainval | 75.8 % | |
YOLOv2 tiny | VOC2007&2012 trainval | 53.5 % | |
YOLOv3 | VOC2007&2012 trainval | 80.2 % |
You can reproduce these scores by the following command.
$ python eval_detection.py --dataset voc [--model faster_rcnn|ssd300|ssd512|yolo_v2|yolo_v2_tiny|yolo_v3] [--pretrained-model <model_path>] [--batchsize <batchsize>] [--gpu <gpu>]
# with multiple GPUs
$ mpiexec -n <#gpu> python eval_detection_multi.py --dataset voc [--model faster_rcnn|ssd300|ssd512|yolo_v2|yolo_v2_tiny|yolo_v3] [--pretrained-model <model_path>] [--batchsize <batchsize>]
Model | Train dataset | FPS | mmAP |
---|---|---|---|
Faster R-CNN FPN ResNet50 | COCO2017 train | 37.1 % | |
Faster R-CNN FPN ResNet101 | COCO2017 train | 39.5 % | |
Light-Head R-CNN ResNet101 | COCO2017 train | 39.3 % |
You can reproduce these scores by the following command.
$ python eval_detection.py --dataset coco [--model faster_rcnn_fpn_resnet50|faster_rcnn_fpn_resnet101] [--pretrained-model <model_path>] [--batchsize <batchsize>] [--gpu <gpu>]
# with multiple GPUs
$ mpiexec -n <#gpu> python eval_detection_multi.py --dataset coco [--model faster_rcnn_fpn_resnet50|faster_rcnn_fpn_resnet101] [--pretrained-model <model_path>] [--batchsize <batchsize>]
These images are included in PASCAL VOC2007 test.
You can generate these visualization results by the following command.
$ python visualuze_models.py
Here is a list of important configurations to reproduce results.
model.use_preset('evaluate')
configures postprocessing parameters for evaluation such as threshold for confidence score.DetectionVOCEvaluator
should be instantiated withuse_07_metric=True
(default is False), if evaluation is conducted on VOC 2007 test dataset.- When evaluating on VOC dataset,
VOCBboxDataset
should return information about difficulties of bounding boxes, as the evaluation metric expects that to be included. The dataset returns it by settinguse_difficult=True
andreturn_difficult=True
.