-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
139 lines (123 loc) · 5.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from nmt.dataset import create_dataset
from nmt.optim import NoamScheduler
from nmt.vocab import load_vocab
from nmt.workdir import WorkDir
from nmt.config import Config
from nmt.util import (
clip_grad,
get_device,
)
from nmt.model import (
create_model,
load_ckpt,
save_ckpt,
)
@torch.no_grad()
def valid_epoch(model, data_iter, criterion, device):
model.eval()
valid_loss = 0
for idx, batch in enumerate(data_iter):
src, src_len, tgt, tgt_len = [i.to(device) for i in batch]
tgt, gold = tgt[:, :-1], tgt[:, 1:]
pred = model(src, src_len, tgt, tgt_len)
# pred: (batch, seqlen, vocab)
# gold: (batch, seq)
pred = pred.permute(0, 2, 1)
loss = criterion(pred, gold)
valid_loss += loss
valid_loss /= len(data_iter)
return valid_loss
def train_epoch(model, data_iter, criterion, optimizer, scheduler, device):
model.train()
train_loss = 0
for idx, batch in enumerate(data_iter):
src, src_len, tgt, tgt_len = [i.to(device) for i in batch]
tgt, gold = tgt[:, :-1], tgt[:, 1:]
optimizer.zero_grad()
pred = model(src, src_len, tgt, tgt_len)
# pred: (batch, seqlen, vocab)
# gold: (batch, seqlen)
pred = pred.permute(0, 2, 1)
loss = criterion(pred, gold)
loss.backward()
# clip grad
clip_grad(model, 1)
optimizer.step()
train_loss += loss.item()
train_loss /= len(data_iter)
scheduler.step()
return train_loss
def train(model, train_set, valid_set, src_vocab, tgt_vocab, device=None,
model_dir=None, num_epochs=10, batch_size=32, learning_rate=0.001,
warmup_steps=400, checkpoint=False):
train_iter = DataLoader(dataset=train_set,
batch_size=batch_size,
shuffle=True)
valid_iter = DataLoader(dataset=valid_set,
batch_size=batch_size,
shuffle=False)
criterion = nn.CrossEntropyLoss(ignore_index=tgt_vocab.PAD_IDX)
optimizer = optim.Adam(model.parameters(), lr=learning_rate,
betas=(0.9, 0.98), eps=1e-9)
scheduler = NoamScheduler(optimizer, warmup_steps)
if checkpoint:
load_ckpt(model_dir, model, optimizer)
train_hist, valid_hist = [], []
for epoch in range(num_epochs):
train_loss = train_epoch(model, train_iter, criterion, optimizer,
scheduler, device)
valid_loss = valid_epoch(model, valid_iter, criterion, device)
train_hist.append(train_loss)
valid_hist.append(valid_loss)
if model_dir is not None:
save_ckpt(model_dir, model, optimizer, mode='last')
if valid_loss <= min(valid_hist):
save_ckpt(model_dir, model, optimizer, mode='best')
print(f'epoch {epoch+1}: train_loss={train_loss:>3f}, '
f'valid_loss={valid_loss:>3f}')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', required=True,
help='configure file for model')
parser.add_argument('-w', '--work-dir', required=True,
help='working dir to perform')
parser.add_argument('-m', '--model-type', default=None,
help='model type to use')
parser.add_argument('-n', '--num-epochs', type=int, default=10,
help='number of training epochs')
parser.add_argument('-b', '--batch-size', type=int, default=32,
help='batch size of mini-batch')
parser.add_argument('-l', '--learning-rate', type=float, default=0.001,
help='learning rate of training')
parser.add_argument('--warmup', type=int, default=0,
help='warmup steps of training')
parser.add_argument('--onlycpu', action='store_true',
help='whether only work on cpu')
parser.add_argument('--checkpoint', action='store_true',
help='whether use checkpoint in working dir')
args = parser.parse_args()
wdir = WorkDir(args.work_dir)
conf = Config.load_config(args.config)
if args.model_type:
conf.model.update({'type': args.model_type})
src_vocab, tgt_vocab = load_vocab(wdir.vocab)
train_set, valid_set = create_dataset(data_dir=wdir.data,
split=('train', 'valid'))
device = get_device(args.onlycpu)
model = create_model(enc_vocab=len(src_vocab),
dec_vocab=len(tgt_vocab),
**conf.model)
model = model.to(device)
model_dir = wdir.model.sub(conf.model.type)
train(model, train_set, valid_set, src_vocab, tgt_vocab,
device=device,
model_dir=model_dir,
num_epochs=args.num_epochs,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
warmup_steps=args.warmup,
checkpoint=args.checkpoint)