-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
237 lines (187 loc) · 9.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import os
import re
import torch
import evaluate
from datasets import load_dataset, DatasetDict, Audio
from transformers import (
WhisperFeatureExtractor,
WhisperTokenizer,
WhisperProcessor,
WhisperForConditionalGeneration,
)
from indicnlp import common
from indicnlp import loader
from indicnlp.normalize.indic_normalize import DevanagariNormalizer
AUDIO_COLUMN_NAME = "audio"
TEXT_COLUMN_NAME = "sentence"
def is_length_hallucination(pred_text, ref_text, ratio_threshold=1.5):
pred_len = len(pred_text.split())
ref_len = len(ref_text.split())
return pred_len > ratio_threshold * ref_len
def validate(model_path, dataset, opt, language="hi", whisper_norm=True, model_size="tiny"):
"""
Validate the Whisper model on the provided test dataset and compute WER.
Args:
model_path (str): Path to the finetuned model or model identifier.
dataset (DatasetDict): Dataset dictionary containing the "test" split.
opt (Namespace): Parsed command-line options.
language (str): Language code.
whisper_norm (bool): Whether to use Whisper's inbuilt normalization.
model_size (str): Size of the Whisper model.
Returns:
float: The average Word Error Rate (WER) on the test dataset.
"""
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# Initialize feature extractor, tokenizer and processor
feature_extractor = WhisperFeatureExtractor.from_pretrained(f"openai/whisper-{model_size}")
tokenizer = WhisperTokenizer.from_pretrained(f"openai/whisper-{model_size}", language=language, task="transcribe")
processor = WhisperProcessor.from_pretrained(f"openai/whisper-{model_size}", language=language, task="transcribe")
metric = evaluate.load("wer")
# Load model
model = WhisperForConditionalGeneration.from_pretrained(model_path)
model = model.to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
model.config.suppress_tokens = []
def compute_metrics(pred, do_normalize_eval=True, wnorm=True):
"""
Compute the WER for a batch of predictions.
Args:
pred (dict): Dictionary with "predictions" and "label_ids".
do_normalize_eval (bool): Whether to perform normalization.
wnorm (bool): If True, use Whisper normalization; else use Indic normalization.
Returns:
dict: A dictionary with the computed WER.
"""
pred_ids = pred["predictions"]
label_ids = pred["label_ids"]
# Replace -100 with the pad_token_id
label_ids[label_ids == -100] = tokenizer.pad_token_id
# Decode predictions and labels
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
if do_normalize_eval:
if wnorm:
pred_str = [processor.tokenizer._normalize(pred) for pred in pred_str]
label_str = [processor.tokenizer._normalize(label) for label in label_str]
else:
pred_str = [normalizer.normalize(pred) for pred in pred_str]
label_str = [normalizer.normalize(label) for label in label_str]
# Filter out empty references and strip whitespaces
pred_str = [pred_str[i].strip() for i in range(len(pred_str)) if len(label_str[i]) > 0]
label_str = [label_str[i].strip() for i in range(len(label_str)) if len(label_str[i]) > 0]
if is_length_hallucination(pred_str[0], label_str[0]):
return False
wer_value = 100 * metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer_value}
total_wer = 0.0
num_batches = 0
if opt.remove_digits:
dataset["test"] = dataset["test"].filter(lambda x: not re.search(r'\d', x["sentence"]))
for batch in dataset["test"]:
inputs = processor(batch["audio"]["array"], return_tensors="pt")
input_features = inputs.input_features
generated_ids = model.generate(
inputs=input_features.to(device),
forced_decoder_ids=forced_decoder_ids,
repetition_penalty=1.15,
num_beams=5
).cpu()
label_ids = tokenizer(batch["sentence"]).input_ids
label_features = [{"input_ids": label_ids}]
labels_batch = processor.tokenizer.pad(label_features, return_tensors="pt")
# Replace padding tokens with -100 so they are ignored in loss computation
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
# Remove the bos token if present (it's appended later)
if (labels[:, 0] == processor.tokenizer.bos_token_id).all().cpu().item():
labels = labels[:, 1:]
preds = {"predictions": generated_ids, "label_ids": labels}
wer_ = compute_metrics(preds, wnorm=whisper_norm)
if wer_:
total_wer += wer_["wer"]
num_batches += 1
return total_wer / num_batches if num_batches > 0 else 0.0
def normalize_dataset(ds, audio_column_name=None, text_column_name=None):
"""
Normalize the dataset by renaming columns, resampling audio, and removing extra columns.
Args:
ds (Dataset): The dataset to normalize.
audio_column_name (str, optional): The current name of the audio column.
text_column_name (str, optional): The current name of the text column.
Returns:
Dataset: The normalized dataset.
"""
if audio_column_name is not None and audio_column_name != AUDIO_COLUMN_NAME:
ds = ds.rename_column(audio_column_name, AUDIO_COLUMN_NAME)
if text_column_name is not None and text_column_name != TEXT_COLUMN_NAME:
ds = ds.rename_column(text_column_name, TEXT_COLUMN_NAME)
# Resample audio to a consistent sampling rate
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
# Remove all columns except for "audio" and "sentence"
ds = ds.remove_columns(set(ds.features.keys()) - {AUDIO_COLUMN_NAME, TEXT_COLUMN_NAME})
return ds
def load_datasets(dataset_name, dataset_split, dataset_language):
"""
Load and normalize the dataset for evaluation.
Currently, only the 'google/fleurs' dataset is supported.
Args:
dataset_name (str): The name of the dataset.
dataset_split (str): The split(s) to load.
dataset_language (str): The language code for the dataset.
Returns:
DatasetDict: A dictionary containing the test split.
"""
ds = DatasetDict()
if dataset_name == "google/fleurs":
ds_test = load_dataset(dataset_name, dataset_language, split=dataset_split)
ds_test = normalize_dataset(ds_test, text_column_name="transcription")
else:
raise ValueError(
f"{dataset_name} is not supported by the script, please add the code to load the dataset correctly. "
"Supported datasets: [`google/fleurs`]"
)
ds["test"] = ds_test
return ds
def main():
"""
Main function to parse arguments, load datasets, and validate the Whisper model.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--model_size', default="tiny", type=str, help='Whisper model size')
parser.add_argument('--model_path', default=None, type=str, help="Finetuned model path. If None, uses openai/whisper-{model_size}")
parser.add_argument('--language', default='hi', help="Model language code")
parser.add_argument('--use_indic_norm', default=False, action='store_true', help="Use Indic normalization for text processing.")
parser.add_argument('--eval_dataset', default='google/fleurs', help="Evaluation dataset.")
parser.add_argument('--eval_split', default='train+test+validation', help="Dataset split to use for evaluation. Defaults to full dataset.")
parser.add_argument('--dataset_language', default='hi_in', help="Evaluation dataset language code (if applicable).")
parser.add_argument('--remove_digits', default=False, action='store_true', help="Remove samples with digits.")
opt = parser.parse_args()
# Setup Indic normalization if enabled
if opt.use_indic_norm:
if not os.path.exists("./indic_nlp_resources"):
raise ValueError("Please clone `indic_nlp_resources` to use Indic normalizer.")
if opt.language in ["hi"]:
common.set_resources_path('indic_nlp_resources')
loader.load()
global normalizer # Make normalizer global for use in compute_metrics
normalizer = DevanagariNormalizer(opt.language)
else:
raise ValueError(f"Invalid language {opt.language} for Indic normalizer")
# If mode_path, infer from model_size and use default whisper
if opt.model_path is None:
print(f"Using openai/whisper-{opt.model_size}")
opt.model_path = f"openai/whisper-{opt.model_size}"
else:
print(f"Using {opt.model_path}")
ds = load_datasets(opt.eval_dataset, opt.eval_split, dataset_language=opt.dataset_language)
wer = validate(
opt.model_path,
ds,
opt,
language=opt.language,
whisper_norm=not opt.use_indic_norm,
model_size=opt.model_size
)
print(f"WER on {opt.eval_dataset} with language {opt.language}: {wer}")
if __name__ == "__main__":
main()