1
1
Package: sits
2
2
Type: Package
3
- Version: 1.1.0-8
3
+ Version: 1.2.0
4
4
Title: Satellite Image Time Series Analysis for Earth Observation Data Cubes
5
5
Authors@R: c(person('Rolf', 'Simoes', role = c('aut'), email = '
[email protected] '),
6
6
person('Gilberto', 'Camara', role = c('aut', 'cre'), email = '
[email protected] '),
@@ -26,7 +26,7 @@ Description: An end-to-end toolkit for land use and land cover classification
26
26
random forests, extreme gradient boosting, multi-layer perceptrons,
27
27
temporal convolutional neural networks <doi:10.3390/rs11050523>,
28
28
residual networks <arxiv:1809.04356>, and temporal attention encoders
29
- <arXiv :2007.00586>.
29
+ <arxiv :2007.00586>.
30
30
Performs efficient classification of big Earth observation data cubes and includes
31
31
functions for post-classification smoothing based on Bayesian inference, and
32
32
methods for uncertainty assessment. Enables best
@@ -48,7 +48,6 @@ Imports:
48
48
dplyr (>= 1.0.0),
49
49
gdalUtilities,
50
50
grDevices,
51
- ggplot2,
52
51
graphics,
53
52
lubridate,
54
53
parallel (>= 4.0.5),
@@ -67,13 +66,13 @@ Suggests:
67
66
caret,
68
67
dendextend,
69
68
dtwclust,
70
- dtwSat (>= 0.2.7),
71
69
DiagrammeR,
72
70
digest,
73
71
e1071,
74
72
FNN,
75
73
gdalcubes (>= 0.6.0),
76
74
geojsonsf,
75
+ ggplot2,
77
76
httr,
78
77
jsonlite,
79
78
kohonen(>= 3.0.11),
@@ -85,10 +84,12 @@ Suggests:
85
84
openxlsx,
86
85
randomForest,
87
86
randomForestExplainer,
87
+ RColorBrewer,
88
88
RcppArmadillo (>= 0.11),
89
89
scales,
90
90
stars (>= 0.5),
91
91
testthat (>= 3.1.3),
92
+ tmap,
92
93
torchopt(>= 0.1.2),
93
94
xgboost,
94
95
zoo
@@ -109,40 +110,51 @@ Collate:
109
110
'sits_active_learning.R'
110
111
'sits_bands.R'
111
112
'sits_bbox.R'
113
+ 'sits_block.R'
114
+ 'sits_chunks.R'
112
115
'sits_classification.R'
113
116
'sits_classify_ts.R'
114
117
'sits_classify_cube.R'
118
+ 'sits_colors.R'
119
+ 'sits_combine_predictions.R'
115
120
'sits_compare.R'
116
121
'sits_config.R'
117
122
'sits_csv.R'
118
123
'sits_cube.R'
119
124
'sits_cube_aux_functions.R'
125
+ 'sits_cube_copy.R'
120
126
'sits_check.R'
121
127
'sits_cluster.R'
122
128
'sits_debug.R'
123
129
'sits_distances.R'
124
130
'sits_dt_reference.R'
125
131
'sits_factory.R'
132
+ 'sits_file.R'
126
133
'sits_file_info.R'
127
134
'sits_filters.R'
128
135
'sits_gdalcubes.R'
129
136
'sits_geo_dist.R'
130
137
'sits_get_data.R'
131
138
'sits_imputation.R'
139
+ 'sits_internals.R'
140
+ 'sits_jobs.R'
132
141
'sits_labels.R'
133
142
'sits_label_classification.R'
134
143
'sits_lighttae.R'
135
144
'sits_machine_learning.R'
136
145
'sits_merge.R'
137
146
'sits_mixture_model.R'
138
147
'sits_mlp.R'
148
+ 'sits_mosaic.R'
149
+ 'sits_model_export.R'
139
150
'sits_parallel.R'
140
151
'sits_patterns.R'
152
+ 'sits_period.R'
141
153
'sits_plot.R'
154
+ 'sits_reclassify.R'
142
155
'sits_raster_api.R'
143
- 'sits_raster_api_terra.R'
144
- 'sits_raster_blocks.R'
145
156
'sits_raster_data.R'
157
+ 'sits_raster_api_terra.R'
146
158
'sits_raster_sub_image.R'
147
159
'sits_regularize.R'
148
160
'sits_resnet.R'
@@ -152,7 +164,6 @@ Collate:
152
164
'sits_sf.R'
153
165
'sits_shp.R'
154
166
'sits_smooth.R'
155
- 'sits_smooth_aux_functions.R'
156
167
'sits_som.R'
157
168
'sits_source_api.R'
158
169
'sits_source_api_aws.R'
@@ -172,10 +183,10 @@ Collate:
172
183
'sits_torch_spatial_encoder.R'
173
184
'sits_torch_temporal_attention_encoder.R'
174
185
'sits_tibble.R'
186
+ 'sits_tile_api.R'
175
187
'sits_timeline.R'
176
188
'sits_train.R'
177
189
'sits_tuning.R'
178
- 'sits_twdtw.R'
179
190
'sits_utils.R'
180
191
'sits_uncertainty.R'
181
192
'sits_validate.R'
0 commit comments