Skip to content

Commit d3bac7d

Browse files
committed
llama : reorder build_orion() at correct place (#5118)
1 parent 5cb04db commit d3bac7d

File tree

1 file changed

+119
-120
lines changed

1 file changed

+119
-120
lines changed

llama.cpp

+119-120
Original file line numberDiff line numberDiff line change
@@ -4666,126 +4666,6 @@ struct llm_build_context {
46664666
ctx0 = nullptr;
46674667
}
46684668
}
4669-
struct ggml_cgraph * build_orion() {
4670-
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
4671-
4672-
const int64_t n_embd_head = hparams.n_embd_head_v;
4673-
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
4674-
GGML_ASSERT(n_embd_head == hparams.n_rot);
4675-
4676-
struct ggml_tensor * cur;
4677-
struct ggml_tensor * inpL;
4678-
4679-
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
4680-
cb(inpL, "inp_embd", -1);
4681-
4682-
// inp_pos - contains the positions
4683-
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
4684-
cb(inp_pos, "inp_pos", -1);
4685-
4686-
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
4687-
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
4688-
cb(KQ_mask, "KQ_mask", -1);
4689-
4690-
// shift the entire K-cache if needed
4691-
if (do_rope_shift) {
4692-
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
4693-
}
4694-
4695-
for (int il = 0; il < n_layer; ++il) {
4696-
struct ggml_tensor * inpSA = inpL;
4697-
4698-
// norm
4699-
cur = llm_build_norm(ctx0, inpL, hparams,
4700-
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
4701-
LLM_NORM, cb, il);
4702-
cb(cur, "attn_norm", il);
4703-
4704-
// self-attention
4705-
{
4706-
// compute Q and K and RoPE them
4707-
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
4708-
cb(Qcur, "Qcur", il);
4709-
// if (model.layers[il].bq) {
4710-
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
4711-
// cb(Qcur, "Qcur", il);
4712-
// }
4713-
4714-
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
4715-
cb(Kcur, "Kcur", il);
4716-
// if (model.layers[il].bk) {
4717-
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
4718-
// cb(Kcur, "Kcur", il);
4719-
// }
4720-
4721-
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
4722-
cb(Vcur, "Vcur", il);
4723-
// if (model.layers[il].bv) {
4724-
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
4725-
// cb(Vcur, "Vcur", il);
4726-
// }
4727-
4728-
Qcur = ggml_rope_custom(
4729-
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
4730-
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
4731-
ext_factor, attn_factor, beta_fast, beta_slow
4732-
);
4733-
cb(Qcur, "Qcur", il);
4734-
4735-
Kcur = ggml_rope_custom(
4736-
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
4737-
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
4738-
ext_factor, attn_factor, beta_fast, beta_slow
4739-
);
4740-
cb(Kcur, "Kcur", il);
4741-
4742-
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
4743-
model.layers[il].wo, NULL,
4744-
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
4745-
cb(cur, "kqv_out", il);
4746-
}
4747-
4748-
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
4749-
cb(ffn_inp, "ffn_inp", il);
4750-
4751-
// feed-forward network
4752-
cur = llm_build_norm(ctx0, ffn_inp, hparams,
4753-
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
4754-
LLM_NORM, cb, il);
4755-
cb(cur, "ffn_norm", il);
4756-
4757-
cur = llm_build_ffn(ctx0, cur,
4758-
model.layers[il].ffn_up, NULL,
4759-
model.layers[il].ffn_gate, NULL,
4760-
model.layers[il].ffn_down, NULL,
4761-
NULL,
4762-
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
4763-
cb(cur, "ffn_out", il);
4764-
4765-
cur = ggml_add(ctx0, cur, ffn_inp);
4766-
cb(cur, "l_out", il);
4767-
4768-
// input for next layer
4769-
inpL = cur;
4770-
}
4771-
4772-
cur = inpL;
4773-
4774-
cur = llm_build_norm(ctx0, cur, hparams,
4775-
model.output_norm, model.output_norm_b,
4776-
LLM_NORM, cb, -1);
4777-
cb(cur, "result_norm", -1);
4778-
4779-
// lm_head
4780-
cur = ggml_mul_mat(ctx0, model.output, cur);
4781-
cb(cur, "result_output", -1);
4782-
4783-
ggml_build_forward_expand(gf, cur);
4784-
4785-
return gf;
4786-
}
4787-
4788-
47894669

47904670
struct ggml_cgraph * build_llama() {
47914671
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -6589,6 +6469,125 @@ struct llm_build_context {
65896469

65906470
return gf;
65916471
}
6472+
6473+
struct ggml_cgraph * build_orion() {
6474+
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
6475+
6476+
const int64_t n_embd_head = hparams.n_embd_head_v;
6477+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
6478+
GGML_ASSERT(n_embd_head == hparams.n_rot);
6479+
6480+
struct ggml_tensor * cur;
6481+
struct ggml_tensor * inpL;
6482+
6483+
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
6484+
cb(inpL, "inp_embd", -1);
6485+
6486+
// inp_pos - contains the positions
6487+
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
6488+
cb(inp_pos, "inp_pos", -1);
6489+
6490+
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
6491+
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
6492+
cb(KQ_mask, "KQ_mask", -1);
6493+
6494+
// shift the entire K-cache if needed
6495+
if (do_rope_shift) {
6496+
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
6497+
}
6498+
6499+
for (int il = 0; il < n_layer; ++il) {
6500+
struct ggml_tensor * inpSA = inpL;
6501+
6502+
// norm
6503+
cur = llm_build_norm(ctx0, inpL, hparams,
6504+
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
6505+
LLM_NORM, cb, il);
6506+
cb(cur, "attn_norm", il);
6507+
6508+
// self-attention
6509+
{
6510+
// compute Q and K and RoPE them
6511+
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
6512+
cb(Qcur, "Qcur", il);
6513+
// if (model.layers[il].bq) {
6514+
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
6515+
// cb(Qcur, "Qcur", il);
6516+
// }
6517+
6518+
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
6519+
cb(Kcur, "Kcur", il);
6520+
// if (model.layers[il].bk) {
6521+
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
6522+
// cb(Kcur, "Kcur", il);
6523+
// }
6524+
6525+
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
6526+
cb(Vcur, "Vcur", il);
6527+
// if (model.layers[il].bv) {
6528+
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
6529+
// cb(Vcur, "Vcur", il);
6530+
// }
6531+
6532+
Qcur = ggml_rope_custom(
6533+
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
6534+
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
6535+
ext_factor, attn_factor, beta_fast, beta_slow
6536+
);
6537+
cb(Qcur, "Qcur", il);
6538+
6539+
Kcur = ggml_rope_custom(
6540+
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
6541+
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
6542+
ext_factor, attn_factor, beta_fast, beta_slow
6543+
);
6544+
cb(Kcur, "Kcur", il);
6545+
6546+
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
6547+
model.layers[il].wo, NULL,
6548+
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
6549+
cb(cur, "kqv_out", il);
6550+
}
6551+
6552+
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
6553+
cb(ffn_inp, "ffn_inp", il);
6554+
6555+
// feed-forward network
6556+
cur = llm_build_norm(ctx0, ffn_inp, hparams,
6557+
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
6558+
LLM_NORM, cb, il);
6559+
cb(cur, "ffn_norm", il);
6560+
6561+
cur = llm_build_ffn(ctx0, cur,
6562+
model.layers[il].ffn_up, NULL,
6563+
model.layers[il].ffn_gate, NULL,
6564+
model.layers[il].ffn_down, NULL,
6565+
NULL,
6566+
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
6567+
cb(cur, "ffn_out", il);
6568+
6569+
cur = ggml_add(ctx0, cur, ffn_inp);
6570+
cb(cur, "l_out", il);
6571+
6572+
// input for next layer
6573+
inpL = cur;
6574+
}
6575+
6576+
cur = inpL;
6577+
6578+
cur = llm_build_norm(ctx0, cur, hparams,
6579+
model.output_norm, model.output_norm_b,
6580+
LLM_NORM, cb, -1);
6581+
cb(cur, "result_norm", -1);
6582+
6583+
// lm_head
6584+
cur = ggml_mul_mat(ctx0, model.output, cur);
6585+
cb(cur, "result_output", -1);
6586+
6587+
ggml_build_forward_expand(gf, cur);
6588+
6589+
return gf;
6590+
}
65926591
};
65936592

65946593
static struct ggml_cgraph * llama_build_graph(

0 commit comments

Comments
 (0)