You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: google/resource_vertex_ai_featurestore_entitytype.go
+294-1
Original file line number
Diff line number
Diff line change
@@ -64,10 +64,66 @@ If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] spe
64
64
MaxItems: 1,
65
65
Elem: &schema.Resource{
66
66
Schema: map[string]*schema.Schema{
67
+
"categorical_threshold_config": {
68
+
Type: schema.TypeList,
69
+
Optional: true,
70
+
Description: `Threshold for categorical features of anomaly detection. This is shared by all types of Featurestore Monitoring for categorical features (i.e. Features with type (Feature.ValueType) BOOL or STRING).`,
71
+
MaxItems: 1,
72
+
Elem: &schema.Resource{
73
+
Schema: map[string]*schema.Schema{
74
+
"value": {
75
+
Type: schema.TypeFloat,
76
+
Required: true,
77
+
Description: `Specify a threshold value that can trigger the alert. For categorical feature, the distribution distance is calculated by L-inifinity norm. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.`,
78
+
},
79
+
},
80
+
},
81
+
},
82
+
"import_features_analysis": {
83
+
Type: schema.TypeList,
84
+
Optional: true,
85
+
Description: `The config for ImportFeatures Analysis Based Feature Monitoring.`,
86
+
MaxItems: 1,
87
+
Elem: &schema.Resource{
88
+
Schema: map[string]*schema.Schema{
89
+
"anomaly_detection_baseline": {
90
+
Type: schema.TypeString,
91
+
Optional: true,
92
+
Description: `Defines the baseline to do anomaly detection for feature values imported by each [entityTypes.importFeatureValues][] operation. The value must be one of the values below:
93
+
* LATEST_STATS: Choose the later one statistics generated by either most recent snapshot analysis or previous import features analysis. If non of them exists, skip anomaly detection and only generate a statistics.
94
+
* MOST_RECENT_SNAPSHOT_STATS: Use the statistics generated by the most recent snapshot analysis if exists.
95
+
* PREVIOUS_IMPORT_FEATURES_STATS: Use the statistics generated by the previous import features analysis if exists.`,
96
+
},
97
+
"state": {
98
+
Type: schema.TypeString,
99
+
Optional: true,
100
+
Description: `Whether to enable / disable / inherite default hebavior for import features analysis. The value must be one of the values below:
101
+
* DEFAULT: The default behavior of whether to enable the monitoring. EntityType-level config: disabled.
102
+
* ENABLED: Explicitly enables import features analysis. EntityType-level config: by default enables import features analysis for all Features under it.
103
+
* DISABLED: Explicitly disables import features analysis. EntityType-level config: by default disables import features analysis for all Features under it.`,
104
+
},
105
+
},
106
+
},
107
+
},
108
+
"numerical_threshold_config": {
109
+
Type: schema.TypeList,
110
+
Optional: true,
111
+
Description: `Threshold for numerical features of anomaly detection. This is shared by all objectives of Featurestore Monitoring for numerical features (i.e. Features with type (Feature.ValueType) DOUBLE or INT64).`,
112
+
MaxItems: 1,
113
+
Elem: &schema.Resource{
114
+
Schema: map[string]*schema.Schema{
115
+
"value": {
116
+
Type: schema.TypeFloat,
117
+
Required: true,
118
+
Description: `Specify a threshold value that can trigger the alert. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature. The default value is 0.3.`,
119
+
},
120
+
},
121
+
},
122
+
},
67
123
"snapshot_analysis": {
68
124
Type: schema.TypeList,
69
125
Optional: true,
70
-
Description: `Configuration of how features in Featurestore are monitored.`,
126
+
Description: `The config for Snapshot Analysis Based Feature Monitoring.`,
71
127
MaxItems: 1,
72
128
Elem: &schema.Resource{
73
129
Schema: map[string]*schema.Schema{
@@ -77,6 +133,19 @@ If this is populated with [FeaturestoreMonitoringConfig.monitoring_interval] spe
77
133
Description: `The monitoring schedule for snapshot analysis. For EntityType-level config: unset / disabled = true indicates disabled by default for Features under it; otherwise by default enable snapshot analysis monitoring with monitoringInterval for Features under it.`,
78
134
Default: false,
79
135
},
136
+
"monitoring_interval_days": {
137
+
Type: schema.TypeInt,
138
+
Optional: true,
139
+
Description: `Configuration of the snapshot analysis based monitoring pipeline running interval. The value indicates number of days. The default value is 1.
140
+
If both FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days and [FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval][] are set when creating/updating EntityTypes/Features, FeaturestoreMonitoringConfig.SnapshotAnalysis.monitoring_interval_days will be used.`,
141
+
Default: 1,
142
+
},
143
+
"staleness_days": {
144
+
Type: schema.TypeInt,
145
+
Optional: true,
146
+
Description: `Customized export features time window for snapshot analysis. Unit is one day. The default value is 21 days. Minimum value is 1 day. Maximum value is 4000 days.`,
147
+
Default: 21,
148
+
},
80
149
},
81
150
},
82
151
},
@@ -403,6 +472,12 @@ func flattenVertexAIFeaturestoreEntitytypeMonitoringConfig(v interface{}, d *sch
0 commit comments