forked from microsoft/semantic-kernel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.py
847 lines (713 loc) · 31.6 KB
/
kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
# Copyright (c) Microsoft. All rights reserved.
import glob
import importlib
import inspect
import os
from logging import Logger
from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union
from uuid import uuid4
from semantic_kernel.connectors.ai.ai_exception import AIException
from semantic_kernel.connectors.ai.chat_completion_client_base import (
ChatCompletionClientBase,
)
from semantic_kernel.connectors.ai.chat_request_settings import ChatRequestSettings
from semantic_kernel.connectors.ai.complete_request_settings import (
CompleteRequestSettings,
)
from semantic_kernel.connectors.ai.embeddings.embedding_generator_base import (
EmbeddingGeneratorBase,
)
from semantic_kernel.connectors.ai.text_completion_client_base import (
TextCompletionClientBase,
)
from semantic_kernel.kernel_exception import KernelException
from semantic_kernel.memory.memory_store_base import MemoryStoreBase
from semantic_kernel.memory.null_memory import NullMemory
from semantic_kernel.memory.semantic_text_memory import SemanticTextMemory
from semantic_kernel.memory.semantic_text_memory_base import SemanticTextMemoryBase
from semantic_kernel.orchestration.context_variables import ContextVariables
from semantic_kernel.orchestration.sk_context import SKContext
from semantic_kernel.orchestration.sk_function import SKFunction
from semantic_kernel.orchestration.sk_function_base import SKFunctionBase
from semantic_kernel.reliability.pass_through_without_retry import (
PassThroughWithoutRetry,
)
from semantic_kernel.reliability.retry_mechanism_base import RetryMechanismBase
from semantic_kernel.semantic_functions.prompt_template import PromptTemplate
from semantic_kernel.semantic_functions.prompt_template_config import (
PromptTemplateConfig,
)
from semantic_kernel.semantic_functions.semantic_function_config import (
SemanticFunctionConfig,
)
from semantic_kernel.skill_definition.read_only_skill_collection_base import (
ReadOnlySkillCollectionBase,
)
from semantic_kernel.skill_definition.skill_collection import SkillCollection
from semantic_kernel.skill_definition.skill_collection_base import SkillCollectionBase
from semantic_kernel.template_engine.prompt_template_engine import PromptTemplateEngine
from semantic_kernel.template_engine.protocols.prompt_templating_engine import (
PromptTemplatingEngine,
)
from semantic_kernel.utils.null_logger import NullLogger
from semantic_kernel.utils.validation import validate_function_name, validate_skill_name
T = TypeVar("T")
class Kernel:
_log: Logger
_skill_collection: SkillCollectionBase
_prompt_template_engine: PromptTemplatingEngine
_memory: SemanticTextMemoryBase
def __init__(
self,
skill_collection: Optional[SkillCollectionBase] = None,
prompt_template_engine: Optional[PromptTemplatingEngine] = None,
memory: Optional[SemanticTextMemoryBase] = None,
log: Optional[Logger] = None,
) -> None:
self._log = log if log else NullLogger()
self._skill_collection = (
skill_collection if skill_collection else SkillCollection(self._log)
)
self._prompt_template_engine = (
prompt_template_engine
if prompt_template_engine
else PromptTemplateEngine(self._log)
)
self._memory = memory if memory else NullMemory()
self._text_completion_services: Dict[
str, Callable[["Kernel"], TextCompletionClientBase]
] = {}
self._chat_services: Dict[
str, Callable[["Kernel"], ChatCompletionClientBase]
] = {}
self._text_embedding_generation_services: Dict[
str, Callable[["Kernel"], EmbeddingGeneratorBase]
] = {}
self._default_text_completion_service: Optional[str] = None
self._default_chat_service: Optional[str] = None
self._default_text_embedding_generation_service: Optional[str] = None
self._retry_mechanism: RetryMechanismBase = PassThroughWithoutRetry()
@property
def logger(self) -> Logger:
return self._log
@property
def memory(self) -> SemanticTextMemoryBase:
return self._memory
@property
def prompt_template_engine(self) -> PromptTemplatingEngine:
return self._prompt_template_engine
@property
def skills(self) -> ReadOnlySkillCollectionBase:
return self._skill_collection.read_only_skill_collection
def register_semantic_function(
self,
skill_name: Optional[str],
function_name: str,
function_config: SemanticFunctionConfig,
) -> SKFunctionBase:
if skill_name is None or skill_name == "":
skill_name = SkillCollection.GLOBAL_SKILL
assert skill_name is not None # for type checker
validate_skill_name(skill_name)
validate_function_name(function_name)
function = self._create_semantic_function(
skill_name, function_name, function_config
)
self._skill_collection.add_semantic_function(function)
return function
def register_native_function(
self,
skill_name: Optional[str],
sk_function: Callable,
) -> SKFunctionBase:
if not hasattr(sk_function, "__sk_function__"):
raise KernelException(
KernelException.ErrorCodes.InvalidFunctionType,
"sk_function argument must be decorated with @sk_function",
)
function_name = sk_function.__sk_function_name__
if skill_name is None or skill_name == "":
skill_name = SkillCollection.GLOBAL_SKILL
assert skill_name is not None # for type checker
validate_skill_name(skill_name)
validate_function_name(function_name)
function = SKFunction.from_native_method(sk_function, skill_name, self.logger)
if self.skills.has_function(skill_name, function_name):
raise KernelException(
KernelException.ErrorCodes.FunctionOverloadNotSupported,
"Overloaded functions are not supported, "
"please differentiate function names.",
)
function.set_default_skill_collection(self.skills)
self._skill_collection.add_native_function(function)
return function
async def run_stream_async(
self,
*functions: Any,
input_context: Optional[SKContext] = None,
input_vars: Optional[ContextVariables] = None,
input_str: Optional[str] = None,
):
if len(functions) > 1:
pipeline_functions = functions[:-1]
stream_function = functions[-1]
# run pipeline functions
context = await self.run_async(
pipeline_functions, input_context, input_vars, input_str
)
elif len(functions) == 1:
stream_function = functions[0]
# TODO: Preparing context for function invoke can be refactored as code below are same as run_async
# if the user passed in a context, prioritize it, but merge with any other inputs
if input_context is not None:
context = input_context
if input_vars is not None:
context._variables = input_vars.merge_or_overwrite(
new_vars=context._variables, overwrite=False
)
if input_str is not None:
context._variables = ContextVariables(input_str).merge_or_overwrite(
new_vars=context._variables, overwrite=False
)
# if the user did not pass in a context, prioritize an input string,
# and merge that with input context variables
else:
if input_str is not None and input_vars is None:
variables = ContextVariables(input_str)
elif input_str is None and input_vars is not None:
variables = input_vars
elif input_str is not None and input_vars is not None:
variables = ContextVariables(input_str)
variables = variables.merge_or_overwrite(
new_vars=input_vars, overwrite=False
)
else:
variables = ContextVariables()
context = SKContext(
variables,
self._memory,
self._skill_collection.read_only_skill_collection,
self._log,
)
else:
raise ValueError("No functions passed to run")
try:
completion = ""
async for stream_message in stream_function.invoke_stream_async(
input=None, context=context
):
completion += stream_message
yield stream_message
except Exception as ex:
# TODO: "critical exceptions"
self._log.error(
f"Something went wrong in stream function."
f"During function invocation: '{stream_function.skill_name}.{stream_function.name}'. "
f"Error description: '{str(ex)}'"
)
raise KernelException(
KernelException.ErrorCodes.FunctionInvokeError,
"Error occurred while invoking stream function",
)
async def run_async(
self,
*functions: Any,
input_context: Optional[SKContext] = None,
input_vars: Optional[ContextVariables] = None,
input_str: Optional[str] = None,
) -> SKContext:
# if the user passed in a context, prioritize it, but merge with any other inputs
if input_context is not None:
context = input_context
if input_vars is not None:
context._variables = input_vars.merge_or_overwrite(
new_vars=context._variables, overwrite=False
)
if input_str is not None:
context._variables = ContextVariables(input_str).merge_or_overwrite(
new_vars=context._variables, overwrite=False
)
# if the user did not pass in a context, prioritize an input string,
# and merge that with input context variables
else:
if input_str is not None and input_vars is None:
variables = ContextVariables(input_str)
elif input_str is None and input_vars is not None:
variables = input_vars
elif input_str is not None and input_vars is not None:
variables = ContextVariables(input_str)
variables = variables.merge_or_overwrite(
new_vars=input_vars, overwrite=False
)
else:
variables = ContextVariables()
context = SKContext(
variables,
self._memory,
self._skill_collection.read_only_skill_collection,
self._log,
)
pipeline_step = 0
for func in functions:
assert isinstance(func, SKFunctionBase), (
"All func arguments to Kernel.run*(inputs, func1, func2, ...) "
"must be SKFunctionBase instances"
)
if context.error_occurred:
self._log.error(
f"Something went wrong in pipeline step {pipeline_step}. "
f"Error description: '{context.last_error_description}'"
)
return context
pipeline_step += 1
try:
context = await func.invoke_async(input=None, context=context)
if context.error_occurred:
self._log.error(
f"Something went wrong in pipeline step {pipeline_step}. "
f"During function invocation: '{func.skill_name}.{func.name}'. "
f"Error description: '{context.last_error_description}'"
)
return context
except Exception as ex:
self._log.error(
f"Something went wrong in pipeline step {pipeline_step}. "
f"During function invocation: '{func.skill_name}.{func.name}'. "
f"Error description: '{str(ex)}'"
)
context.fail(str(ex), ex)
return context
return context
def func(self, skill_name: str, function_name: str) -> SKFunctionBase:
if self.skills.has_native_function(skill_name, function_name):
return self.skills.get_native_function(skill_name, function_name)
return self.skills.get_semantic_function(skill_name, function_name)
def use_memory(
self,
storage: MemoryStoreBase,
embeddings_generator: Optional[EmbeddingGeneratorBase] = None,
) -> None:
if embeddings_generator is None:
service_id = self.get_text_embedding_generation_service_id()
if not service_id:
raise ValueError("The embedding service id cannot be `None` or empty")
embeddings_service = self.get_ai_service(EmbeddingGeneratorBase, service_id)
if not embeddings_service:
raise ValueError(f"AI configuration is missing for: {service_id}")
embeddings_generator = embeddings_service(self)
if storage is None:
raise ValueError("The storage instance provided cannot be `None`")
if embeddings_generator is None:
raise ValueError("The embedding generator cannot be `None`")
self.register_memory(SemanticTextMemory(storage, embeddings_generator))
def register_memory(self, memory: SemanticTextMemoryBase) -> None:
self._memory = memory
def register_memory_store(self, memory_store: MemoryStoreBase) -> None:
self.use_memory(memory_store)
def create_new_context(self) -> SKContext:
return SKContext(
ContextVariables(),
self._memory,
self.skills,
self._log,
)
def import_skill(
self, skill_instance: Any, skill_name: str = ""
) -> Dict[str, SKFunctionBase]:
if skill_name.strip() == "":
skill_name = SkillCollection.GLOBAL_SKILL
self._log.debug(f"Importing skill {skill_name} into the global namespace")
else:
self._log.debug(f"Importing skill {skill_name}")
functions = []
if isinstance(skill_instance, dict):
candidates = skill_instance.items()
else:
candidates = inspect.getmembers(skill_instance, inspect.ismethod)
# Read every method from the skill instance
for _, candidate in candidates:
# If the method is a semantic function, register it
if not hasattr(candidate, "__sk_function__"):
continue
functions.append(
SKFunction.from_native_method(candidate, skill_name, self.logger)
)
self.logger.debug(f"Methods imported: {len(functions)}")
# Uniqueness check on function names
function_names = [f.name for f in functions]
if len(function_names) != len(set(function_names)):
raise KernelException(
KernelException.ErrorCodes.FunctionOverloadNotSupported,
"Overloaded functions are not supported, "
"please differentiate function names.",
)
skill = {}
for function in functions:
function.set_default_skill_collection(self.skills)
self._skill_collection.add_native_function(function)
skill[function.name] = function
return skill
def get_ai_service(
self, type: Type[T], service_id: Optional[str] = None
) -> Callable[["Kernel"], T]:
matching_type = {}
if type == TextCompletionClientBase:
service_id = service_id or self._default_text_completion_service
matching_type = self._text_completion_services
elif type == ChatCompletionClientBase:
service_id = service_id or self._default_chat_service
matching_type = self._chat_services
elif type == EmbeddingGeneratorBase:
service_id = service_id or self._default_text_embedding_generation_service
matching_type = self._text_embedding_generation_services
else:
raise ValueError(f"Unknown AI service type: {type.__name__}")
if service_id not in matching_type:
raise ValueError(
f"{type.__name__} service with service_id '{service_id}' not found"
)
return matching_type[service_id]
def all_text_completion_services(self) -> List[str]:
return list(self._text_completion_services.keys())
def all_chat_services(self) -> List[str]:
return list(self._chat_services.keys())
def all_text_embedding_generation_services(self) -> List[str]:
return list(self._text_embedding_generation_services.keys())
def add_text_completion_service(
self,
service_id: str,
service: Union[
TextCompletionClientBase, Callable[["Kernel"], TextCompletionClientBase]
],
overwrite: bool = True,
) -> "Kernel":
if not service_id:
raise ValueError("service_id must be a non-empty string")
if not overwrite and service_id in self._text_completion_services:
raise ValueError(
f"Text service with service_id '{service_id}' already exists"
)
self._text_completion_services[service_id] = (
service if isinstance(service, Callable) else lambda _: service
)
if self._default_text_completion_service is None:
self._default_text_completion_service = service_id
return self
def add_chat_service(
self,
service_id: str,
service: Union[
ChatCompletionClientBase, Callable[["Kernel"], ChatCompletionClientBase]
],
overwrite: bool = True,
) -> "Kernel":
if not service_id:
raise ValueError("service_id must be a non-empty string")
if not overwrite and service_id in self._chat_services:
raise ValueError(
f"Chat service with service_id '{service_id}' already exists"
)
self._chat_services[service_id] = (
service if isinstance(service, Callable) else lambda _: service
)
if self._default_chat_service is None:
self._default_chat_service = service_id
if isinstance(service, TextCompletionClientBase):
self.add_text_completion_service(service_id, service)
if self._default_text_completion_service is None:
self._default_text_completion_service = service_id
return self
def add_text_embedding_generation_service(
self,
service_id: str,
service: Union[
EmbeddingGeneratorBase, Callable[["Kernel"], EmbeddingGeneratorBase]
],
overwrite: bool = False,
) -> "Kernel":
if not service_id:
raise ValueError("service_id must be a non-empty string")
if not overwrite and service_id in self._text_embedding_generation_services:
raise ValueError(
f"Embedding service with service_id '{service_id}' already exists"
)
self._text_embedding_generation_services[service_id] = (
service if isinstance(service, Callable) else lambda _: service
)
if self._default_text_embedding_generation_service is None:
self._default_text_embedding_generation_service = service_id
return self
def set_default_text_completion_service(self, service_id: str) -> "Kernel":
if service_id not in self._text_completion_services:
raise ValueError(
f"AI service with service_id '{service_id}' does not exist"
)
self._default_text_completion_service = service_id
return self
def set_default_chat_service(self, service_id: str) -> "Kernel":
if service_id not in self._chat_services:
raise ValueError(
f"AI service with service_id '{service_id}' does not exist"
)
self._default_chat_service = service_id
return self
def set_default_text_embedding_generation_service(
self, service_id: str
) -> "Kernel":
if service_id not in self._text_embedding_generation_services:
raise ValueError(
f"AI service with service_id '{service_id}' does not exist"
)
self._default_text_embedding_generation_service = service_id
return self
def get_text_completion_service_service_id(
self, service_id: Optional[str] = None
) -> str:
if service_id is None or service_id not in self._text_completion_services:
if self._default_text_completion_service is None:
raise ValueError("No default text service is set")
return self._default_text_completion_service
return service_id
def get_chat_service_service_id(self, service_id: Optional[str] = None) -> str:
if service_id is None or service_id not in self._chat_services:
if self._default_chat_service is None:
raise ValueError("No default chat service is set")
return self._default_chat_service
return service_id
def get_text_embedding_generation_service_id(
self, service_id: Optional[str] = None
) -> str:
if (
service_id is None
or service_id not in self._text_embedding_generation_services
):
if self._default_text_embedding_generation_service is None:
raise ValueError("No default embedding service is set")
return self._default_text_embedding_generation_service
return service_id
def remove_text_completion_service(self, service_id: str) -> "Kernel":
if service_id not in self._text_completion_services:
raise ValueError(
f"AI service with service_id '{service_id}' does not exist"
)
del self._text_completion_services[service_id]
if self._default_text_completion_service == service_id:
self._default_text_completion_service = next(
iter(self._text_completion_services), None
)
return self
def remove_chat_service(self, service_id: str) -> "Kernel":
if service_id not in self._chat_services:
raise ValueError(
f"AI service with service_id '{service_id}' does not exist"
)
del self._chat_services[service_id]
if self._default_chat_service == service_id:
self._default_chat_service = next(iter(self._chat_services), None)
return self
def remove_text_embedding_generation_service(self, service_id: str) -> "Kernel":
if service_id not in self._text_embedding_generation_services:
raise ValueError(
f"AI service with service_id '{service_id}' does not exist"
)
del self._text_embedding_generation_services[service_id]
if self._default_text_embedding_generation_service == service_id:
self._default_text_embedding_generation_service = next(
iter(self._text_embedding_generation_services), None
)
return self
def clear_all_text_completion_services(self) -> "Kernel":
self._text_completion_services = {}
self._default_text_completion_service = None
return self
def clear_all_chat_services(self) -> "Kernel":
self._chat_services = {}
self._default_chat_service = None
return self
def clear_all_text_embedding_generation_services(self) -> "Kernel":
self._text_embedding_generation_services = {}
self._default_text_embedding_generation_service = None
return self
def clear_all_services(self) -> "Kernel":
self._text_completion_services = {}
self._chat_services = {}
self._text_embedding_generation_services = {}
self._default_text_completion_service = None
self._default_chat_service = None
self._default_text_embedding_generation_service = None
return self
def _create_semantic_function(
self,
skill_name: str,
function_name: str,
function_config: SemanticFunctionConfig,
) -> SKFunctionBase:
function_type = function_config.prompt_template_config.type
if not function_type == "completion":
raise AIException(
AIException.ErrorCodes.FunctionTypeNotSupported,
f"Function type not supported: {function_type}",
)
function = SKFunction.from_semantic_config(
skill_name, function_name, function_config
)
function.request_settings.update_from_completion_config(
function_config.prompt_template_config.completion
)
# Connect the function to the current kernel skill
# collection, in case the function is invoked manually
# without a context and without a way to find other functions.
function.set_default_skill_collection(self.skills)
if function_config.has_chat_prompt:
service = self.get_ai_service(
ChatCompletionClientBase,
function_config.prompt_template_config.default_services[0]
if len(function_config.prompt_template_config.default_services) > 0
else None,
)
function.set_chat_configuration(
ChatRequestSettings.from_completion_config(
function_config.prompt_template_config.completion
)
)
if service is None:
raise AIException(
AIException.ErrorCodes.InvalidConfiguration,
"Could not load chat service, unable to prepare semantic function. "
"Function description: "
"{function_config.prompt_template_config.description}",
)
function.set_chat_service(lambda: service(self))
else:
service = self.get_ai_service(
TextCompletionClientBase,
function_config.prompt_template_config.default_services[0]
if len(function_config.prompt_template_config.default_services) > 0
else None,
)
function.set_ai_configuration(
CompleteRequestSettings.from_completion_config(
function_config.prompt_template_config.completion
)
)
if service is None:
raise AIException(
AIException.ErrorCodes.InvalidConfiguration,
"Could not load text service, unable to prepare semantic function. "
"Function description: "
"{function_config.prompt_template_config.description}",
)
function.set_ai_service(lambda: service(self))
return function
def import_native_skill_from_directory(
self, parent_directory: str, skill_directory_name: str
) -> Dict[str, SKFunctionBase]:
MODULE_NAME = "native_function"
validate_skill_name(skill_directory_name)
skill_directory = os.path.abspath(
os.path.join(parent_directory, skill_directory_name)
)
native_py_file_path = os.path.join(skill_directory, f"{MODULE_NAME}.py")
if not os.path.exists(native_py_file_path):
raise ValueError(
f"Native Skill Python File does not exist: {native_py_file_path}"
)
skill_name = os.path.basename(skill_directory)
try:
spec = importlib.util.spec_from_file_location(
MODULE_NAME, native_py_file_path
)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
class_name = next(
(
name
for name, cls in inspect.getmembers(module, inspect.isclass)
if cls.__module__ == MODULE_NAME
),
None,
)
if class_name:
skill_obj = getattr(module, class_name)()
return self.import_skill(skill_obj, skill_name)
except Exception:
pass
return {}
def import_semantic_skill_from_directory(
self, parent_directory: str, skill_directory_name: str
) -> Dict[str, SKFunctionBase]:
CONFIG_FILE = "config.json"
PROMPT_FILE = "skprompt.txt"
validate_skill_name(skill_directory_name)
skill_directory = os.path.join(parent_directory, skill_directory_name)
skill_directory = os.path.abspath(skill_directory)
if not os.path.exists(skill_directory):
raise ValueError(f"Skill directory does not exist: {skill_directory_name}")
skill = {}
directories = glob.glob(skill_directory + "/*/")
for directory in directories:
dir_name = os.path.dirname(directory)
function_name = os.path.basename(dir_name)
prompt_path = os.path.join(directory, PROMPT_FILE)
# Continue only if the prompt template exists
if not os.path.exists(prompt_path):
continue
config = PromptTemplateConfig()
config_path = os.path.join(directory, CONFIG_FILE)
with open(config_path, "r") as config_file:
config = config.from_json(config_file.read())
# Load Prompt Template
with open(prompt_path, "r") as prompt_file:
template = PromptTemplate(
prompt_file.read(), self.prompt_template_engine, config
)
# Prepare lambda wrapping AI logic
function_config = SemanticFunctionConfig(config, template)
skill[function_name] = self.register_semantic_function(
skill_directory_name, function_name, function_config
)
return skill
def create_semantic_function(
self,
prompt_template: str,
function_name: Optional[str] = None,
skill_name: Optional[str] = None,
description: Optional[str] = None,
max_tokens: int = 256,
temperature: float = 0.0,
top_p: float = 1.0,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
number_of_responses: int = 1,
stop_sequences: Optional[List[str]] = None,
) -> "SKFunctionBase":
function_name = (
function_name
if function_name is not None
else f"f_{str(uuid4()).replace('-', '_')}"
)
config = PromptTemplateConfig(
description=(
description
if description is not None
else "Generic function, unknown purpose"
),
type="completion",
completion=PromptTemplateConfig.CompletionConfig(
temperature,
top_p,
presence_penalty,
frequency_penalty,
max_tokens,
number_of_responses,
stop_sequences if stop_sequences is not None else [],
),
)
validate_function_name(function_name)
if skill_name is not None:
validate_skill_name(skill_name)
template = PromptTemplate(prompt_template, self.prompt_template_engine, config)
function_config = SemanticFunctionConfig(config, template)
return self.register_semantic_function(
skill_name, function_name, function_config
)