-
Notifications
You must be signed in to change notification settings - Fork 287
Commit be43414

Port MobileNet (#2049)
* kaggle weights
* updated Mobilenet backbone to match it with torch implementation
* Deleted presets
* Mobilenet preset deleted
* code reformat
* padding changed
* downsample_padding
* typo fixed
* timm script added
* checkpoint conversion added
* preset added
* preset testcase added
BytePairTokenizer must not split sequences of \n (#1910)
* fix for loading of special tokens in Llama tokenizer
* fix for Llama tokenizer which can have multiple end tokens
* bug fix
* adding some missing tokens to Llama3 tokenizer
* fixed tests and Llama3Tokenizer init.
* now loading correct eos_token config from Hugging Face checkpoint. Using hack for Keras checkpoint because it does not have this info
* fix for BytePairTokenizer to make Lllama3-instruct work in chat: \n\n sequences are significant in the chat template and must be preserved by the tokenizer
---------
Co-authored-by: Martin Görner <[email protected]>
fix for generation that never stops in Llama3-Instruct variants (#1904)
* fix for loading of special tokens in Llama tokenizer
* fix for Llama tokenizer which can have multiple end tokens
* bug fix
* adding some missing tokens to Llama3 tokenizer
* fixed tests and Llama3Tokenizer init.
* now loading correct eos_token config from Hugging Face checkpoint. Using hack for Keras checkpoint because it does not have this info
---------
Co-authored-by: Martin Görner <[email protected]>
fix failing JAX GPU test (#1911)
* fix tests
* fix test
Refactor `MMDiT`, add `ImageToImage` and `Inpaint` for SD3 (#1909)
* Refactor `MMDiT` and add `ImageToImage`
* Update model version
* Fix minor bugs.
* Add `Inpaint` for SD3.
* Fix warnings of MMDiT.
* Addcomment to Inpaint
* Simplify `MMDiT` implementation and info of `summary()`.
* Refactor `generate()` API of `TextToImage`, `ImageToImage` and `Inpaint`.
Minor bug fix (#1915)
Change to image_converter.image_size since it is a tuple and it's not a callable function.
[Mix Transformer] Add Presets for MiTB0...MiTB5 (#1893)
* add presets for mit
* add standin paths
* register presets in __init__.py
* fix op in overlapping patching and embedding, start adding conversion utils
* style
* add padding to MiT patchingandembedding
* update to support other presets
* update conversin script
* fix link for b5
* add cityscapes weights
* update presets
* update presets
* update conversion script to make directories
* use save_preset
* change name of output dir
* add preprocessor flow
* api gen and add preprocessor to mits
* conform to new image classifier style
* format
* resizing image converter -> ImageConverter
* address comments
refactoring
remove default resizing for vision backbones (#1916)
* remove defailt resizing
* fix GPU test
Update VGG model to be compatible with HF and add conversion scripts (#1914)
Deeplab presets (#1918)
* add preset configurations for deeplabv3
* fix uri
* Add training details
update presets to point to the main Keras Kaggle page (#1921)
* update presets to point to the main keras page
* update mit path
Added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates (#1912)
* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates
* un commented the test lines that were commented by mistake
* fixed linter errors
Task models fix (#1922)
* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates
* fix for wrongly configured task models LLama, PaliGemma, Mistral and Phi3 + test
* comments
* un commented the test lines that were commented by mistake
* fixed linter errors
adding option strip_prompt to generate() (#1913)
* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates
* un commented the test lines that were commented by mistake
* fixed linter errors
* added options strip_prompt to generate()
* fix for tensorflow: the compiled version of generate(strip_prompt=True) now works + code refactoring to make it more understandable
* added test for generate(strip_prompt=True)
* minor edits
Layout map for Llama (#1923)
* added test for the way BytePairTokenizer handles the \n\n sequence, which is important in Lama chat templates
* un commented the test lines that were commented by mistake
* fixed linter errors
* added default layout map for Llama
* minor fixes in tests
Update deeplab_v3_presets.py (#1924)
Add paths to get SAM weights from (#1925)
Two fixes for image resizing in preprocessing (#1927)
1. Properly display when are not resizing the input image in
`model.summary()`
2. Allow setting the `image_size` directly on a preprocessing layer.
2. is just to allow a more consistent way to set the input shape
across tasks. We now have:
```python
text_classifier = keras_hub.models.TextClassifer.from_preset(
"bert_base_en",
)
text_classifier.preprocessor.sequence_length = 256
image_classifier = keras_hub.models.TextClassifer.from_preset(
"bert_base_en",
)
image_classifier.preprocessor.image_size = (256, 256)
multi_modal_lm = keras_hub.models.CausalLM.from_preset(
"some_preset",
)
multi_modal_lm.preprocessor.sequence_length = 256
multi_modal_lm.preprocessor.image_size = (256, 256)
```
add back default image resizing (#1926)
Update deeplab_v3_presets.py (#1928)
* Update deeplab_v3_presets.py
* Update deeplab_v3_presets.py
Update PaliGemma to remove `include_rescaling` arg (#1917)
* update PaliGemma
* update conversion script
* fix GPU tests
fix path (#1929)
* fix path
* nit
Fix paligemma checkpoint conversion script (#1931)
* add back default image resizing
* fix bug in image converter
* fix paligemma checkpoint conversion file
* fix preset name
* remove debug code
* revert unintended changes
update preset path to point to latest version of models (#1932)
Update sdv3 path (#1934)
update sam docstring to show correct backbone in docstring (#1936)
Convert input dict to tensors during train_on_batch (#1919)
Register VGG presets. (#1935)
* register vgg preset
* nit
* nit
* nit
Add ResNetVD presets (#1897)
* Add ResNetVD presets
* Updated Kaggle handles
* Add weight conversion script for ResNet_vd
* Add usage
rebase conflict resolved
conflict resolve
Update sam_presets.py (#1940)
Update vit_det_backbone.py (#1941)
fix gpu test (#1939)
* fix gpu test
* cast input
* update dtype
* change to resnet preset
* remove arg
Added Support for Returning Attention Scores in TransformerEncoder call (#1879)
* Added: Return attention scores argument to transformer encoder
* Added: docstring for return_attention_scores and added a test to chek the working of the argument
* Fixed: Test case by removing print stmts and using self.assertAllEqual
* Fixed: Linting
Mark preset tests as large (#1942)
* fix tests
* fix test
* Update preset_utils_test.py
version bump to 0.17.0.dev0 (#1944)
Update stable_diffusion_3_presets.py (#1946)
[Semantic Segmentation] - Add SegFormer Architecture, Weight Conversion Script and Presets (#1883)
* initial commit - tf-based, kcv
* porting to keras_hub structure - removing aliases, presets, etc.
* enable instantiation of segformer backbone with custom MiT backbone
* remove num_classes from backbone
* fix input
* add imports to __init__
* update preset
* update docstrings
* add basic tests
* remove redundant imports
* update docstrings
* remove unused import
* running api_gen.py
* undo refactor of mit
* update docstrings
* add presets for mit
* add standin paths
* add presets for segformer backbone
* register presets in __init__.py
* addressing comments
* addressing comments
* addressing comments
* update most tests
* add remaining tests
* remove copyright
* fix test
* override from_config
* fix op in overlapping patching and embedding, start adding conversion utils
* style
* add padding to MiT patchingandembedding
* update to support other presets
* update conversin script
* fix link for b5
* add cityscapes weights
* update presets
* update presets
* update conversion script to make directories
* use save_preset
* change name of output dir
* add preprocessor flow
* api gen and add preprocessor to mits
* conform to new image classifier style
* format
* resizing image converter -> ImageConverter
* merge mit branch into segformer branch
* add preprocessor and converter
* address comments
* clarify backbone usage
* add conversion script
* numerical equivalence changes
* fix numerical inaccuracies
* update conversion script
* update conversion script
* remove transpose
* add preprocessor to segformer class
* fix preset path
* update test shape
* update presets
* update test shape
* expand docstrings
* add rescaling and normalization to preprocessor
* remove backbone presets, remove copyrights, remove backbone cls from segmenter
* remove copyright and unused import
* apply same transformation to masks as input images
* fix import
* fix shape in tests
Update readme (#1949)
* Update README.md
* Update README.md
Update llama_backbone.py docstring (#1950)
Update path (#1953)
Update preset path for keras.io.
There is no LLaMA2 in keras.io https://keras.io/api/keras_hub/models/llama2
This is the actual link:
https://keras.io/api/keras_hub/models/llama2
For Vicuna it does not have it's own model direcotry, since it is also the part of Llama,, updated the path.
Update SD3 init parameters (replacing `height`, `width` with `image_shape`) (#1951)
* Replace SD3 `height` and `width` with `image_shape`
* Update URI
* Revert comment
* Update SD3 handle
* Replace `height` and `width` with `image_shape`
* Update docstrings
* Fix CI
Update docstring (#1954)
AudioConverter is registered as "keras_hub.layers.WhisperAudioConverter" and not as part of models.
updated Mobilenet backbone to match it with torch implementation
timm script added
checkpoint conversion added
Refactoring
* rebase done
* code formatting
* preset path updated
* WIP mobilenet fixes, subblock refactoring
* WIP refactored, classifier/task changes
* matched mobilenetv3 inference, working now
* format pass
* actual format pass
* fix import
* update test, attempting to fix format issue
* fix format back to original style
* review updates, format fixes etc.
* update fix DepthwiseConvBlock args
* implement compute output shape for squeeze_and_excite layer
* update arguments to IR Block
* explicitly build head before transfer
* updates, fixes to ensure colab workflow works
* add noqa, fix protected variable issue
* fix remaining test issues
* update expected test output/presets
* fix merge typo
---------
Co-authored-by: Usha Rengaraju <[email protected]>
Co-authored-by: ushareng <[email protected]>1 parent 60d9012 commit be43414Copy full SHA for be43414
File tree
Expand file treeCollapse file tree
14 files changed
+1331
-486
lines changedFilter options
- keras_hub
- api
- layers
- models
- src
- models/mobilenet
- utils/timm
- tools/checkpoint_conversion
Expand file treeCollapse file tree
14 files changed
+1331
-486
lines changedkeras_hub/api/layers/__init__.py
Copy file name to clipboardExpand all lines: keras_hub/api/layers/__init__.py+3Lines changed: 3 additions & 0 deletions
Original file line number | Diff line number | Diff line change | |
---|---|---|---|
| |||
52 | 52 |
| |
53 | 53 |
| |
54 | 54 |
| |
| 55 | + | |
| 56 | + | |
| 57 | + | |
55 | 58 |
| |
56 | 59 |
| |
57 | 60 |
| |
|
keras_hub/api/models/__init__.py
Copy file name to clipboardExpand all lines: keras_hub/api/models/__init__.py+3Lines changed: 3 additions & 0 deletions
Original file line number | Diff line number | Diff line change | |
---|---|---|---|
| |||
228 | 228 |
| |
229 | 229 |
| |
230 | 230 |
| |
| 231 | + | |
| 232 | + | |
| 233 | + | |
231 | 234 |
| |
232 | 235 |
| |
233 | 236 |
| |
|
0 commit comments