-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
295 lines (229 loc) · 9.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
from torch.autograd.function import InplaceFunction
from torch.nn import Parameter, Module, ModuleDict
from collections import namedtuple
from torch_geometric.nn.inits import glorot, zeros
from torch_scatter import scatter_add
from collections import OrderedDict
import inspect
from constants import REQUIRED_QUANTIZER_KEYS,REQUIRED_GCN_KEYS
from torch_geometric.utils import (
softmax,
add_self_loops,
remove_self_loops,
add_remaining_self_loops,
)
def scatter_(name, src, index, dim=0, dim_size=None):
"""Taken from an earlier version of PyG"""
assert name in ["add", "mean", "min", "max"]
op = getattr(torch_scatter, "scatter_{}".format(name))
out = op(src, index, dim, None, dim_size)
out = out[0] if isinstance(out, tuple) else out
if name == "max":
out[out < -10000] = 0
elif name == "min":
out[out > 10000] = 0
return out
class MessagePassingQuant(Module):
"""Modified from the PyTorch Geometric message passing class"""
def __init__(
self, aggr="add", flow="source_to_target", node_dim=0, mp_quantizers=None
):
super(MessagePassingQuant, self).__init__()
self.aggr = aggr
assert self.aggr in ["add", "mean", "max"]
self.flow = flow
assert self.flow in ["source_to_target", "target_to_source"]
self.node_dim = node_dim
assert self.node_dim >= 0
self.__msg_params__ = inspect.signature(self.message).parameters
self.__msg_params__ = OrderedDict(self.__msg_params__)
self.__aggr_params__ = inspect.signature(self.aggregate).parameters
self.__aggr_params__ = OrderedDict(self.__aggr_params__)
self.__aggr_params__.popitem(last=False)
self.__update_params__ = inspect.signature(self.update).parameters
self.__update_params__ = OrderedDict(self.__update_params__)
self.__update_params__.popitem(last=False)
msg_args = set(self.__msg_params__.keys()) - msg_special_args
aggr_args = set(self.__aggr_params__.keys()) - aggr_special_args
update_args = set(self.__update_params__.keys()) - update_special_args
self.__args__ = set().union(msg_args, aggr_args, update_args)
assert mp_quantizers is not None
self.mp_quant_fns = mp_quantizers
def reset_parameters(self):
self.mp_quantizers = ModuleDict()
for key in REQUIRED_QUANTIZER_KEYS:
self.mp_quantizers[key] = self.mp_quant_fns[key]()
def __set_size__(self, size, index, tensor):
if not torch.is_tensor(tensor):
pass
elif size[index] is None:
size[index] = tensor.size(self.node_dim)
elif size[index] != tensor.size(self.node_dim):
raise ValueError(
(
f"Encountered node tensor with size "
f"{tensor.size(self.node_dim)} in dimension {self.node_dim}, "
f"but expected size {size[index]}."
)
)
def __collect__(self, edge_index, size, kwargs):
i, j = (0, 1) if self.flow == "target_to_source" else (1, 0)
ij = {"_i": i, "_j": j}
out = {}
for arg in self.__args__:
if arg[-2:] not in ij.keys():
out[arg] = kwargs.get(arg, inspect.Parameter.empty)
else:
idx = ij[arg[-2:]]
data = kwargs.get(arg[:-2], inspect.Parameter.empty)
if data is inspect.Parameter.empty:
out[arg] = data
continue
if isinstance(data, tuple) or isinstance(data, list):
assert len(data) == 2
self.__set_size__(size, 1 - idx, data[1 - idx])
data = data[idx]
if not torch.is_tensor(data):
out[arg] = data
continue
self.__set_size__(size, idx, data)
out[arg] = data.index_select(self.node_dim, edge_index[idx])
size[0] = size[1] if size[0] is None else size[0]
size[1] = size[0] if size[1] is None else size[1]
# Add special message arguments.
out["edge_index"] = edge_index
out["edge_index_i"] = edge_index[i]
out["edge_index_j"] = edge_index[j]
out["size"] = size
out["size_i"] = size[i]
out["size_j"] = size[j]
# Add special aggregate arguments.
out["index"] = out["edge_index_i"]
out["dim_size"] = out["size_i"]
return out
def __distribute__(self, params, kwargs):
out = {}
for key, param in params.items():
data = kwargs[key]
if data is inspect.Parameter.empty:
if param.default is inspect.Parameter.empty:
raise TypeError(f"Required parameter {key} is empty.")
data = param.default
out[key] = data
return out
def propagate(self, edge_index, size=None, **kwargs):
size = [None, None] if size is None else size
size = [size, size] if isinstance(size, int) else size
size = size.tolist() if torch.is_tensor(size) else size
size = list(size) if isinstance(size, tuple) else size
assert isinstance(size, list)
assert len(size) == 2
kwargs = self.__collect__(edge_index, size, kwargs)
msg_kwargs = self.__distribute__(self.__msg_params__, kwargs)
out = self.mp_quantizers["message"](self.message(**msg_kwargs))
aggr_kwargs = self.__distribute__(self.__aggr_params__, kwargs)
out = self.mp_quantizers["aggregate"](self.aggregate(out, **aggr_kwargs))
update_kwargs = self.__distribute__(self.__update_params__, kwargs)
out = self.mp_quantizers["update_q"](self.update(out, **update_kwargs))
return out
def message(self, x_j): # pragma: no cover
return x_j
def aggregate(self, inputs, index, dim_size): # pragma: no cover
return scatter_(self.aggr, inputs, index, self.node_dim, dim_size)
def update(self, inputs): # pragma: no cover
return inputs
class GCNConvQuant(MessagePassingQuant):
def __init__(
self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True,
normalize=True,
mp_quantizers=None,
layer_quantizers=None,
**kwargs,
):
super(GCNConvQuant, self).__init__(aggr="add", mp_quantizers=mp_quantizers, **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.normalize = normalize
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter("bias", None)
assert layer_quantizers is not None
self.layer_quant_fns = layer_quantizers
self.reset_parameters()
def reset_parameters(self):
super().reset_parameters()
glorot(self.weight)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
# create quantization modules for this layer
self.layer_quantizers = ModuleDict()
for key in REQUIRED_GCN_KEYS:
self.layer_quantizers[key] = self.layer_quant_fns[key]()
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False, dtype=None):
if edge_weight is None:
edge_weight = torch.ones(
(edge_index.size(1),), dtype=dtype, device=edge_index.device
)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes
)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float("inf")] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_weight=None):
# quantizing input
x_q = self.layer_quantizers["inputs"](x)
# quantizing layer weights
w_q = self.layer_quantizers["weights"](self.weight)
x = torch.matmul(x_q, w_q)
x = self.layer_quantizers["features"](x)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
"Cached {} number of edges, but found {}. Please "
"disable the caching behavior of this layer by removing "
"the `cached=True` argument in its constructor.".format(
self.cached_num_edges, edge_index.size(1)
)
)
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(
edge_index,
x.size(self.node_dim),
edge_weight,
self.improved,
x.dtype,
)
else:
norm = edge_weight
norm = self.layer_quantizers["norm"](norm)
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return "{}({}, {})".format(
self.__class__.__name__, self.in_channels, self.out_channels
)