|
| 1 | +from abc import ABC, abstractmethod |
| 2 | +from typing import List |
| 3 | + |
| 4 | +from pytorch_optimizer.base.exception import NegativeLRError, NegativeStepError |
| 5 | +from pytorch_optimizer.base.types import OPTIMIZER |
| 6 | + |
| 7 | + |
| 8 | +class BaseLinearWarmupScheduler(ABC): |
| 9 | + r"""BaseLinearWarmupScheduler class. The LR Scheduler class based on this class has linear warmup strategy. |
| 10 | +
|
| 11 | + :param optimizer: Optimizer. OPTIMIZER. It will set learning rate to all trainable parameters in optimizer. |
| 12 | + :param t_max: int. total steps to train. |
| 13 | + :param max_lr: float. maximum lr. |
| 14 | + :param min_lr: float. minimum lr. |
| 15 | + :param init_lr: float. initial lr. |
| 16 | + :param warmup_steps: int. steps to warm-up. |
| 17 | + """ |
| 18 | + |
| 19 | + def __init__( |
| 20 | + self, |
| 21 | + optimizer: OPTIMIZER, |
| 22 | + t_max: int, |
| 23 | + max_lr: float, |
| 24 | + min_lr: float = 0.0, |
| 25 | + init_lr: float = 0.0, |
| 26 | + warmup_steps: int = 0, |
| 27 | + ): |
| 28 | + self.optimizer = optimizer |
| 29 | + self.total_steps = t_max |
| 30 | + self.max_lr = max_lr |
| 31 | + self.min_lr = min_lr |
| 32 | + self.init_lr = init_lr |
| 33 | + self.warmup_steps = warmup_steps |
| 34 | + |
| 35 | + self.step_t: int = 0 |
| 36 | + self.base_lrs: List[float] = [] |
| 37 | + |
| 38 | + # record current value in self._last_lr to match API from torch.optim.lr_scheduler |
| 39 | + self.last_lr: List[float] = [init_lr] |
| 40 | + |
| 41 | + self.validate_parameters() |
| 42 | + |
| 43 | + self._init_lr() |
| 44 | + |
| 45 | + def validate_parameters(self): |
| 46 | + if self.min_lr < 0: |
| 47 | + raise NegativeLRError(self.min_lr, 'min_lr') |
| 48 | + |
| 49 | + if self.max_lr < 0: |
| 50 | + raise NegativeLRError(self.max_lr, 'max_lr') |
| 51 | + |
| 52 | + if self.init_lr < 0: |
| 53 | + raise NegativeLRError(self.init_lr, 'init_lr') |
| 54 | + |
| 55 | + if self.total_steps < 0: |
| 56 | + raise NegativeStepError(self.total_steps, 't_max') |
| 57 | + |
| 58 | + if self.warmup_steps < 0: |
| 59 | + raise NegativeStepError(self.warmup_steps, 'warmup_steps') |
| 60 | + |
| 61 | + def _init_lr(self): |
| 62 | + self.base_lrs = [] |
| 63 | + for param_group in self.optimizer.param_groups: |
| 64 | + param_group['lr'] = self.min_lr |
| 65 | + self.base_lrs.append(self.min_lr) |
| 66 | + |
| 67 | + def step(self): |
| 68 | + if self.step_t < self.warmup_steps: |
| 69 | + value = self.init_lr + (self.max_lr - self.init_lr) * self.step_t / self.warmup_steps |
| 70 | + elif self.step_t == self.warmup_steps: |
| 71 | + value = self.max_lr |
| 72 | + else: |
| 73 | + value = self._step() |
| 74 | + |
| 75 | + self.step_t += 1 |
| 76 | + |
| 77 | + # apply the lr to optimizer if it's provided |
| 78 | + if self.optimizer is not None: |
| 79 | + for param_group in self.optimizer.param_groups: |
| 80 | + param_group['lr'] = value |
| 81 | + |
| 82 | + self.last_lr = [value] |
| 83 | + |
| 84 | + return value |
| 85 | + |
| 86 | + @abstractmethod |
| 87 | + def _step(self) -> float: |
| 88 | + raise NotImplementedError |
| 89 | + |
| 90 | + def get_lr(self) -> float: |
| 91 | + return self.last_lr[0] |
0 commit comments