Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 3b7a783

Browse files
erdOneadamtopaz
andcommitted
feat(topology/*): Gluing topological spaces (#9864)
Co-authored-by: erdOne <[email protected]> Co-authored-by: Adam Topaz <[email protected]>
1 parent 6fb638b commit 3b7a783

File tree

6 files changed

+471
-13
lines changed

6 files changed

+471
-13
lines changed

src/algebraic_geometry/properties.lean

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -123,8 +123,6 @@ begin
123123
((as_iso $ to_Spec_Γ R).CommRing_iso_to_ring_equiv.injective)
124124
end
125125

126-
local attribute [elementwise] category_theory.is_iso.hom_inv_id
127-
128126
lemma basic_open_eq_of_affine {R : CommRing} (f : R) :
129127
RingedSpace.basic_open (Spec.to_SheafedSpace.obj (op R)) ((Spec_Γ_identity.app R).inv f) =
130128
prime_spectrum.basic_open f :=
Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
/-
2+
Copyright (c) 2022 Andrew Yang. All rights reserved.
3+
Released under Apache 2.0 license as described in the file LICENSE.
4+
Authors: Andrew Yang
5+
-/
6+
import tactic.elementwise
7+
import category_theory.limits.has_limits
8+
import category_theory.limits.shapes.kernels
9+
10+
/-!
11+
In this file we provide various simp lemmas in its elementwise form via `tactic.elementwise`.
12+
-/
13+
14+
open category_theory category_theory.limits
15+
16+
attribute [elementwise]
17+
cone.w limit.lift_π limit.w cocone.w colimit.ι_desc colimit.w
18+
kernel.condition cokernel.condition
19+
-- Note that the elementwise forms of `iso.hom_inv_id` and `iso.inv_hom_id` are already
20+
-- provided as `category_theory.coe_hom_inv_id` and `category_theory.coe_inv_hom_id`.
21+
is_iso.hom_inv_id is_iso.inv_hom_id

src/category_theory/limits/concrete_category.lean

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ import category_theory.limits.preserves.basic
77
import category_theory.limits.types
88
import category_theory.limits.shapes.wide_pullbacks
99
import category_theory.limits.shapes.multiequalizer
10-
import tactic.elementwise
10+
import category_theory.concrete_category.elementwise
1111

1212
/-!
1313
# Facts about (co)limits of functors into concrete categories
@@ -19,8 +19,6 @@ open category_theory
1919

2020
namespace category_theory.limits
2121

22-
attribute [elementwise] cone.w limit.lift_π limit.w cocone.w colimit.ι_desc colimit.w
23-
2422
local attribute [instance] concrete_category.has_coe_to_fun concrete_category.has_coe_to_sort
2523

2624
section limits

src/category_theory/limits/shapes/concrete_category.lean

Lines changed: 1 addition & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Authors: Scott Morrison
55
-/
66
import category_theory.limits.shapes.kernels
77
import category_theory.concrete_category.basic
8-
import tactic.elementwise
8+
import category_theory.concrete_category.elementwise
99

1010
/-!
1111
# Facts about limits of functors into concrete categories
@@ -18,10 +18,3 @@ while comparing categorical limits with existing constructions in concrete categ
1818
universes u
1919

2020
open category_theory
21-
22-
23-
namespace category_theory.limits
24-
25-
attribute [elementwise] kernel.condition cokernel.condition
26-
27-
end category_theory.limits

src/logic/function/basic.lean

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -751,3 +751,7 @@ def set.separates_points {α β : Type*} (A : set (α → β)) : Prop :=
751751

752752
lemma is_symm_op.flip_eq {α β} (op) [is_symm_op α β op] : flip op = op :=
753753
funext $ λ a, funext $ λ b, (is_symm_op.symm_op a b).symm
754+
755+
lemma inv_image.equivalence {α : Sort u} {β : Sort v} (r : β → β → Prop) (f : α → β)
756+
(h : equivalence r) : equivalence (inv_image r f) :=
757+
⟨λ _, h.1 _, λ _ _ x, h.2.1 x, inv_image.trans r f h.2.2

0 commit comments

Comments
 (0)