-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict_TBEFN_tf2.py
152 lines (114 loc) · 6.45 KB
/
predict_TBEFN_tf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os, time
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import tf_slim as slim
import numpy as np
import glob
import cv2
checkpoint_dir = './ckpt/'
input_dir = './input_dir/'
result_dir = './results/'
def out_acti(x):
return tf.nn.relu(x)-tf.nn.relu(x-1.0)
def denoise_net(input, name):
with tf.variable_scope(name):
conv1_out = slim.conv2d(input, 3, [3, 3], rate=1, activation_fn=None, scope='di_conv1')
conv2_in = conv1_out
conv2_out = slim.conv2d(conv2_in, 3, [3, 3], rate=1, activation_fn=None, scope='di_conv2')
conv3_in = conv1_out + conv2_out
conv3_out = slim.conv2d(conv3_in, 3, [3, 3], rate=1, activation_fn=None, scope='di_conv3')
conv4_in = conv3_in + conv3_out
conv4_out = slim.conv2d(conv4_in, 3, [3, 3], rate=1, activation_fn=None, scope='di_conv4')
conv5_in = conv4_in + conv4_out
conv5_out = slim.conv2d(conv5_in, 3, [3, 3], rate=1, activation_fn=None, scope='di_conv5')
return out_acti(input + conv5_out)
def upsample_and_concat(x1, x2, output_channels, in_channels):
with tf.variable_scope("us_vars"):
pool_size = 2
deconv_filter = tf.Variable(tf.truncated_normal([pool_size, pool_size, output_channels, in_channels], stddev=0.02))
deconv = tf.nn.conv2d_transpose(x1, deconv_filter, tf.shape(x2), strides=[1, pool_size, pool_size, 1])
deconv_output = tf.concat([deconv, x2], 3)
deconv_output.set_shape([None, None, None, output_channels * 2])
return deconv_output
def simple_unet(input,name):
with tf.variable_scope(name):
conv_1 = slim.conv2d(input, 3, [3, 3], rate=1, activation_fn=None, scope='pp_conv1')
conv_2 = slim.conv2d(conv_1, 3, [3, 3], rate=1, activation_fn=None, scope='pp_conv2')
conv_3 = slim.conv2d(conv_2, 3, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='pp_conv3')
conv_4 = slim.conv2d(conv_3, 3, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='pp_conv4')
#fusion
fu_1 = tf.concat([input, conv_4], 3)
conv1 = slim.conv2d(fu_1, 16, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv1')
pool1 = slim.max_pool2d(conv1, [2, 2], padding='SAME')
conv2 = slim.conv2d(pool1, 32, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv2')
pool2 = slim.max_pool2d(conv2, [2, 2], padding='SAME')
conv3 = slim.conv2d(pool2, 64, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv3')
pool3 = slim.max_pool2d(conv3, [2, 2], padding='SAME')
conv4 = slim.conv2d(pool3, 128, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv4')
up5 = upsample_and_concat(conv4, conv3, 64, 128)
conv5 = slim.conv2d(up5, 64, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv5')
up6 = upsample_and_concat(conv5, conv2, 32, 64)
conv6 = slim.conv2d(up6, 32, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv6')
up7 = upsample_and_concat(conv6, conv1, 16, 32)
conv7 = slim.conv2d(up7, 16, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv7')
conv8 = slim.conv2d(conv7, 3, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='u_conv8') # modified lk199
return conv8
def fusion(input_1,input_2,name):
with tf.variable_scope(name):
fusion_in = tf.concat([input_1, input_2], 3)
out_1 = slim.conv2d(fusion_in, 16, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='fusion_1')
out_2 = slim.conv2d(out_1, 16, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='fusion_2')
out_3 = slim.conv2d(out_2, 3, [3, 3], rate=1, activation_fn=None, scope='fusion_3')
return out_3
def atten(input,name):
with tf.variable_scope(name):
out_1 = slim.conv2d(input, 16, [3, 3], rate=1, activation_fn=tf.nn.relu, scope='atten_1')
out_2 = slim.conv2d(out_1, 16, [3, 3], padding='SAME', rate=2, activation_fn=tf.nn.relu, scope='atten_2')
out_3 = slim.conv2d(out_2, 16, [3, 3], padding='SAME', rate=2, activation_fn=tf.nn.relu, scope='atten_3')
out_4 = slim.conv2d(out_3, 1, [3, 3], rate=1, activation_fn=None, scope='atten_4')
return out_acti(out_4)
def buildmodel(sample):
trans_fun_A_with_1E = simple_unet(sample, name='fun_est_A_with_1E')
enhanced_1E = out_acti(sample * trans_fun_A_with_1E)
denoised_in = denoise_net(sample, name='denoise_net')
trans_fun_B_with_2E = simple_unet(denoised_in, name='fun_est_B_with_2E')
enhanced_2E = out_acti(denoised_in * trans_fun_B_with_2E)
atten_map = atten(sample, name='atten')
fused = atten_map*enhanced_1E + (1-atten_map)*enhanced_2E
enhanced = fusion(fused, sample, name='fusion')
return enhanced
# -----------------------------------------#settings and preparations----------
sess = tf.compat.v1.Session()
in_image = tf.placeholder(tf.float32, [None, None, None, 3])
gt_image = tf.placeholder(tf.float32, [None, None, None, 3])
uf_out = buildmodel(in_image)
# =------------------------------updates--------------------------------
time_elapsed = 0
with tf.Session() as sess:
saver = tf.compat.v1.train.Saver()
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
print('loaded ' + ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
# --------------------------------------------------------------------#
eval_fns = glob.glob(input_dir + '*.*')
for N in range(len(eval_fns)):
temp_train = np.array(cv2.imread(eval_fns[N]))
temp_train = temp_train/255.0
# ---------------------------------------------------------------------#
train_data = temp_train.reshape(1, temp_train.shape[0], temp_train.shape[1], temp_train.shape[2])
st = time.time()
[out] = sess.run([uf_out], feed_dict={in_image: train_data})
time_elapsed += time.time() - st
print('%s' % eval_fns[N])
[_, name] = os.path.split(eval_fns[N])
suffix = name[name.find('.') + 1:]
name = name[:name.find('.')]
output = np.array(out[0])
output = output.reshape(output.shape[0], output.shape[1], output.shape[2])
output = output*255.0
output_rueslt = np.array(output)
if not os.path.isdir(result_dir):
os.makedirs(result_dir)
cv2.imwrite(result_dir + name + '_TBEFN.png', output_rueslt)
print('total processing time: ', time_elapsed)