The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
For example, There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
毫无疑问,回溯法解决。每一步放置一层的皇后,然后放置下一层的皇后,没有位置可以放时返回。
class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
string s(n, '.');
vector<string> result(n, s);
solve(result, 0, n);
return results;
}
void solve(vector<string> &result, int index, int n) {
if (index == n) {
results.push_back(result);
}
for (int j = 0; j < n; j++) {
if (check(result, index, j, n)) {
result[index][j] = 'Q';
solve(result, index+1, n);
result[index][j] = '.';
}
}
}
bool check(vector<string> &result, int i, int j, int n) {
int x = i-1;
int y = j;
int y1 = j-1;
int y2 = j+1;
while (x >= 0) {
if (result[x][y] == 'Q') {
return false;
}
if (y1 >= 0 && result[x][y1] == 'Q') {
return false;
}
if (y2 < n && result[x][y2] == 'Q') {
return false;
}
x--;
y1--;
y2++;
}
return true;
}
private:
vector<vector<string> > results;
};