Skip to content

Commit 63c5f2e

Browse files
committed
docs: fix duo tdl-sdk yolov5 compilation
1 parent e7c1c1b commit 63c5f2e

File tree

2 files changed

+33
-54
lines changed

2 files changed

+33
-54
lines changed

docs/duo/application-development/tdl-sdk/tdl-sdk-yolov5.md

+17-26
Original file line numberDiff line numberDiff line change
@@ -8,37 +8,28 @@ This program inference YOLOv5 model for object detection
88

99
## Cross-Compile YOLO Program for PC
1010

11-
- Duo 256 YOLOv5 code location: [sample_yolov5.cpp](https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/blob/main/sample/cvi_yolo/sample_yolov5.cpp)
12-
13-
### Compilation method:
14-
- Script compilation:
15-
Refer to the previous section [Introduction](https://milkv.io/zh/docs/duo/application-development/tdl-sdk/tdl-sdk-introduction) for compiling the sample program using the provided methods.
16-
17-
- Manual compilation:
18-
- Open the cvitek-tdl-sdk-sg200x/sample/cvi_yolo directory
19-
```bash
20-
cd cvitek-tdl-sdk-sg200x/sample/cvi_yolo
21-
```
22-
- Compile YOLO series programs to obtain the sample_yolov5 binary file
23-
```bash
24-
make KERNEL_ROOT=../../../cvitek-tdl-sdk-sg200x/sample MW_PATH=../../../cvitek-tdl-sdk-sg200x/sample/3rd/middleware/v2 TPU_PATH=../../../cvitek-tdl-sdk-sg200x/sample/3rd/tpu IVE_PATH=../../../cvitek-tdl-sdk-sg200x/sample/3rd/ive USE_TPU_IVE=ON CHIP=CV180X SDK_VER=musl_riscv64 -j10
25-
```
26-
- *(Optional) Delete the generated target binary files*
27-
```bash
28-
make clean
29-
```
11+
- Duo256M YOLOv5 code location: [sample_yolov5.cpp](https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/blob/main/sample/cvi_yolo/sample_yolov5.cpp)
12+
13+
### Compilation method
14+
15+
Refer to the previous section [Introduction](https://milkv.io/zh/docs/duo/application-development/tdl-sdk/tdl-sdk-introduction) for compiling the sample program using the provided methods. After compilation is completed, the `sample_yolov5` program we need will be generated in the `sample/cvi_yolo/` directory.
3016

3117
## Obtain cvimodel
18+
3219
You can either download precompiled yolov5s INT8 symmetric or asymmetric quantized cvimodel models directly, or manually convert the models as described in [Model Compilation](#model-compilation).
20+
3321
### Download Precompiled cvimodels
34-
- Duo 256
35-
```bash
36-
# INT8 symmetric model
37-
wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/raw/main/cvimodel/yolov5_cv181x_int8_sym.cvimodel
38-
# INT8 asymmetric model (commented out as it is optional)
39-
# wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/raw/main/cvimodel/yolov5_cv181x_int8_asym.cvimodel
40-
```
22+
23+
- Duo256M
24+
```bash
25+
# INT8 symmetric model
26+
wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/raw/main/cvimodel/yolov5_cv181x_int8_sym.cvimodel
27+
# INT8 asymmetric model (commented out as it is optional)
28+
wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/raw/main/cvimodel/yolov5_cv181x_int8_asym.cvimodel
29+
```
30+
4131
### Model Compilation
32+
4233
#### Export yolov5s.onnx Model
4334

4435
- First, clone the YOLOv5 official repository. The repository link is: [ultralytics/yolov5\: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite](https://github.com/ultralytics/yolov5)

i18n/zh/docusaurus-plugin-content-docs/current/duo/application-development/tdl-sdk/tdl-sdk-yolov5.md

+16-28
Original file line numberDiff line numberDiff line change
@@ -8,40 +8,28 @@ sidebar_position: 21
88

99
## PC 端交叉编译 YOLO 程序
1010

11-
- Duo 256 YOLOv5 代码位置:[sample_yolov5.cpp](https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/blob/main/sample/cvi_yolo/sample_yolov5.cpp)
11+
- Duo256M YOLOv5 代码位置:[sample_yolov5.cpp](https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/blob/main/sample/cvi_yolo/sample_yolov5.cpp)
1212

13-
### 编译方法:
14-
- 脚本编译 参考上一章节[简介](https://milkv.io/zh/docs/duo/application-development/tdl-sdk/tdl-sdk-introduction)中的方法编译示例程序
13+
### 编译方法
1514

16-
- 手动编译
17-
- 打开cvitek-tdl-sdk-sg200x/sample/cvi_yolo目录
18-
```bash
19-
cd cvitek-tdl-sdk-sg200x/sample/cvi_yolo
20-
```
15+
参考上一章节 [简介](https://milkv.io/zh/docs/duo/application-development/tdl-sdk/tdl-sdk-introduction) 中的方法编译示例程序,编译完成后,会在 `sample/cvi_yolo/` 目录下生成我们需要的 `sample_yolov5` 程序。
2116

22-
- 编译yolo系列程序得到sample_yolov5二进制文件
23-
24-
```bash
25-
make KERNEL_ROOT=../../../cvitek-tdl-sdk-sg200x/sample MW_PATH=../../../cvitek-tdl-sdk-sg200x/sample/3rd/middleware/v2 TPU_PATH=../../../cvitek-tdl-sdk-sg200x/sample/3rd/tpu IVE_PATH=../../../cvitek-tdl-sdk-sg200x/sample/3rd/ive USE_TPU_IVE=ON CHIP=CV180X SDK_VER=musl_riscv64 -j10
26-
```
27-
28-
- *(可选)删除生成的目标二进制文件*
17+
## 获取 cvimodel
2918

30-
```bash
31-
make clean
32-
```
19+
你可以直接下载预编译好的 yolov5s int8 对称量化或者非对称量化 cvimodel 模型,亦可按照[模型编译](#模型编译)手动转换模型。
3320

34-
## 获取 cvimodel
35-
你可以直接下载预编译好的 yolov5s int8 对称量化或者非对称量化 cvimodel 模型,亦可按照[模型编译](#模型编译)手动转换模型
3621
### 下载预编译好的 cvimodel
37-
- Duo 256
38-
```bash
39-
# int8 对称模型
40-
wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/blob/main/cvimodel/yolov5_cv181x_int8_sym.cvimodel
41-
# int8 非对称模型
42-
# wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/blob/main/cvimodel/yolov5_cv181x_int8_asym.cvimodel
43-
```
44-
### 模型编译
22+
23+
- Duo256M
24+
```bash
25+
# int8 对称模型
26+
wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/raw/main/cvimodel/yolov5_cv181x_int8_sym.cvimodel
27+
# int8 非对称模型
28+
wget wget https://github.com/milkv-duo/cvitek-tdl-sdk-sg200x/raw/main/cvimodel/yolov5_cv181x_int8_asym.cvimodel
29+
```
30+
31+
### 模型编译
32+
4533
#### 导出 yolov5s.onnx 模型
4634

4735
- 首先载 yolov5 官方仓库代码,地址如下: [ultralytics/yolov5\: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite](https://github.com/ultralytics/yolov5)

0 commit comments

Comments
 (0)