forked from microsoft/semantic-kernel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_text_completion.py
76 lines (59 loc) · 2.26 KB
/
onnx_text_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from semantic_kernel.connectors.ai.onnx import OnnxGenAITextCompletion
from semantic_kernel.functions.kernel_arguments import KernelArguments
from semantic_kernel.kernel import Kernel
# This concept sample shows how to use the Onnx connector with
# a local model running in Onnx
kernel = Kernel()
service_id = "phi3"
#############################################
# Make sure to download an ONNX model
# (https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-onnx)
# If onnxruntime-genai is used:
# use the model stored in /cpu folder
# If onnxruntime-genai-cuda is installed for gpu use:
# use the model stored in /cuda folder
# Then set ONNX_GEN_AI_TEXT_MODEL_FOLDER environment variable to the path to the model folder
#############################################
streaming = True
kernel.add_service(OnnxGenAITextCompletion(ai_model_id=service_id))
settings = kernel.get_prompt_execution_settings_from_service_id(service_id)
# Phi3 Model is using chat templates to generate responses
# With the Chat Template the model understands
# the context and roles of the conversation better
# https://huggingface.co/microsoft/Phi-3-mini-4k-instruct#chat-format
chat_function = kernel.add_function(
plugin_name="ChatBot",
function_name="Chat",
prompt="<|user|>{{$user_input}}<|end|><|assistant|>",
template_format="semantic-kernel",
prompt_execution_settings=settings,
)
async def chat() -> bool:
try:
user_input = input("User:> ")
except KeyboardInterrupt:
print("\n\nExiting chat...")
return False
except EOFError:
print("\n\nExiting chat...")
return False
if user_input == "exit":
print("\n\nExiting chat...")
return False
if streaming:
print("Mosscap:> ", end="")
async for chunk in kernel.invoke_stream(chat_function, KernelArguments(user_input=user_input)):
print(chunk[0].text, end="")
print("\n")
else:
answer = await kernel.invoke(chat_function, KernelArguments(user_input=user_input))
print(f"Mosscap:> {answer}")
return True
async def main() -> None:
chatting = True
while chatting:
chatting = await chat()
if __name__ == "__main__":
asyncio.run(main())