-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathb_tree.py
312 lines (255 loc) · 8.85 KB
/
b_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class Node:
def __init__(self, leaf=False):
self.keys = []
self.children = []
self.leaf = leaf
class BTree:
def __init__(self, t):
self.root = Node(True)
self.t = t
def search(self, key, node=None):
node = self.root if node == None else node
i = 0
while i < len(node.keys) and key > node.keys[i]:
i += 1
if i < len(node.keys) and key == node.keys[i]:
return (node, i)
elif node.leaf:
return None
else:
return self.search(key, node.children[i])
def split_child(self, x, i):
t = self.t
# y is a full child of x
y = x.children[i]
# create a new node and add it to x's list of children
z = Node(y.leaf)
x.children.insert(i + 1, z)
# insert the median of the full child y into x
x.keys.insert(i, y.keys[t - 1])
# split apart y's keys into y & z
z.keys = y.keys[t: (2 * t) - 1]
y.keys = y.keys[0: t - 1]
# if y is not a leaf, we reassign y's children to y & z
if not y.leaf:
z.children = y.children[t: 2 * t]
y.children = y.children[0: t] # video incorrectly has t-1
def insert(self, k):
t = self.t
root = self.root
# if root is full, create a new node - tree's height grows by 1
if len(root.keys) == (2 * t) - 1:
new_root = Node()
self.root = new_root
new_root.children.insert(0, root)
self.split_child(new_root, 0)
self.insert_non_full(new_root, k)
else:
self.insert_non_full(root, k)
def insert_non_full(self, x, k):
t = self.t
i = len(x.keys) - 1
# find the correct spot in the leaf to insert the key
if x.leaf:
x.keys.append(None)
while i >= 0 and k < x.keys[i]:
x.keys[i + 1] = x.keys[i]
i -= 1
x.keys[i + 1] = k
# if not a leaf, find the correct subtree to insert the key
else:
while i >= 0 and k < x.keys[i]:
i -= 1
i += 1
# if child node is full, split it
if len(x.children[i].keys) == (2 * t) - 1:
self.split_child(x, i)
if k > x.keys[i]:
i += 1
self.insert_non_full(x.children[i], k)
def delete(self, x, k):
t = self.t
i = 0
while i < len(x.keys) and k > x.keys[i]:
i += 1
if x.leaf:
if i < len(x.keys) and x.keys[i] == k:
x.keys.pop(i)
return
if i < len(x.keys) and x.keys[i] == k:
return self.delete_internal_node(x, k, i)
elif len(x.children[i].keys) >= t:
self.delete(x.children[i], k)
else:
if i != 0 and i + 2 < len(x.children):
if len(x.children[i - 1].keys) >= t:
self.delete_sibling(x, i, i - 1)
elif len(x.children[i + 1].keys) >= t:
self.delete_sibling(x, i, i + 1)
else:
self.delete_merge(x, i, i + 1)
elif i == 0:
if len(x.children[i + 1].keys) >= t:
self.delete_sibling(x, i, i + 1)
else:
self.delete_merge(x, i, i + 1)
elif i + 1 == len(x.children):
if len(x.children[i - 1].keys) >= t:
self.delete_sibling(x, i, i - 1)
else:
self.delete_merge(x, i, i - 1)
self.delete(x.children[i], k)
def delete_internal_node(self, x, k, i):
t = self.t
if x.leaf:
if x.keys[i] == k:
x.keys.pop(i)
return
if len(x.children[i].keys) >= t:
x.keys[i] = self.delete_predecessor(x.children[i])
return
elif len(x.children[i + 1].keys) >= t:
x.keys[i] = self.delete_successor(x.children[i + 1])
return
else:
self.delete_merge(x, i, i + 1)
self.delete_internal_node(x.children[i], k, self.t - 1)
def delete_predecessor(self, x):
if x.leaf:
return x.keys.pop()
n = len(x.keys) - 1
if len(x.children[n].keys) >= self.t:
self.delete_sibling(x, n + 1, n)
else:
self.delete_merge(x, n, n + 1)
self.delete_predecessor(x.children[n])
def delete_successor(self, x):
if x.leaf:
return x.keys.pop(0)
if len(x.children[1].keys) >= self.t:
self.delete_sibling(x, 0, 1)
else:
self.delete_merge(x, 0, 1)
self.delete_successor(x.children[0])
def delete_merge(self, x, i, j):
cnode = x.children[i]
if j > i:
rsnode = x.children[j]
cnode.keys.append(x.keys[i])
for k in range(len(rsnode.keys)):
cnode.keys.append(rsnode.keys[k])
if len(rsnode.children) > 0:
cnode.children.append(rsnode.children[k])
if len(rsnode.children) > 0:
cnode.children.append(rsnode.children.pop())
new = cnode
x.keys.pop(i)
x.children.pop(j)
else:
lsnode = x.children[j]
lsnode.keys.append(x.keys[j])
for i in range(len(cnode.keys)):
lsnode.keys.append(cnode.keys[i])
if len(lsnode.children) > 0:
lsnode.children.append(cnode.children[i])
if len(lsnode.children) > 0:
lsnode.children.append(cnode.children.pop())
new = lsnode
x.keys.pop(j)
x.children.pop(i)
if x == self.root and len(x.keys) == 0:
self.root = new
def delete_sibling(self, x, i, j):
cnode = x.children[i]
if i < j:
rsnode = x.children[j]
cnode.keys.append(x.keys[i])
x.keys[i] = rsnode.keys[0]
if len(rsnode.children) > 0:
cnode.children.append(rsnode.children[0])
rsnode.children.pop(0)
rsnode.keys.pop(0)
else:
lsnode = x.children[j]
cnode.keys.insert(0, x.keys[i - 1])
x.keys[i - 1] = lsnode.keys.pop()
if len(lsnode.children) > 0:
cnode.children.insert(0, lsnode.children.pop())
def print_tree(self, x, level=0):
print(f'Level {level}', end=": ")
for i in x.keys:
print(i, end=" ")
print()
level += 1
if len(x.children) > 0:
for i in x.children:
self.print_tree(i, level)
def delete_example():
first_leaf = Node(True)
first_leaf.keys = [1, 9]
second_leaf = Node(True)
second_leaf.keys = [17, 19, 21]
third_leaf = Node(True)
third_leaf.keys = [23, 25, 27]
fourth_leaf = Node(True)
fourth_leaf.keys = [31, 32, 39]
fifth_leaf = Node(True)
fifth_leaf.keys = [41, 47, 50]
sixth_leaf = Node(True)
sixth_leaf.keys = [56, 60]
seventh_leaf = Node(True)
seventh_leaf.keys = [72, 90]
root_left_child = Node()
root_left_child.keys = [15, 22, 30]
root_left_child.children.append(first_leaf)
root_left_child.children.append(second_leaf)
root_left_child.children.append(third_leaf)
root_left_child.children.append(fourth_leaf)
root_right_child = Node()
root_right_child.keys = [55, 63]
root_right_child.children.append(fifth_leaf)
root_right_child.children.append(sixth_leaf)
root_right_child.children.append(seventh_leaf)
root = Node()
root.keys = [40]
root.children.append(root_left_child)
root.children.append(root_right_child)
B = BTree(3)
B.root = root
print('\n--- Original B-Tree ---\n')
B.print_tree(B.root)
print('\n--- Case 1: DELETED 21 ---\n')
B.delete(B.root, 21)
B.print_tree(B.root)
print('\n--- Case 2a: DELETED 30 ---\n')
B.delete(B.root, 30)
B.print_tree(B.root)
print('\n--- Case 2b: DELETED 27 ---\n')
B.delete(B.root, 27)
B.print_tree(B.root)
print('\n--- Case 2c: DELETED 22 ---\n')
B.delete(B.root, 22)
B.print_tree(B.root)
print('\n--- Case 3b: DELETED 17 ---\n')
B.delete(B.root, 17)
B.print_tree(B.root)
print('\n--- Case 3a: DELETED 9 ---\n')
B.delete(B.root, 9)
B.print_tree(B.root)
def insert_and_search_example():
B = BTree(3)
for i in range(10):
B.insert(i)
B.print_tree(B.root)
print()
keys_to_search_for = [2, 9, 11, 4]
for key in keys_to_search_for:
if B.search(key) is not None:
print(f'{key} is in the tree')
else:
print(f'{key} is NOT in the tree')
def main():
print('\n--- INSERT & SEARCH ---\n')
insert_and_search_example()
delete_example()
main()