-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathtranslation_eval.py
329 lines (289 loc) · 11.7 KB
/
translation_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import shutil
import sys
import mmcv
import torch
from mmcv import Config
from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint
from torchvision.utils import save_image
from mmgen.apis import set_random_seed
from mmgen.core import build_metric
from mmgen.core.evaluation import make_metrics_table, make_vanilla_dataloader
from mmgen.datasets import build_dataloader, build_dataset
from mmgen.models import build_model
from mmgen.models.translation_models import BaseTranslationModel
from mmgen.utils import get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate a GAN model')
parser.add_argument('config', help='evaluation config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--target-domain', type=str, default=None, help='Desired image domain')
parser.add_argument('--seed', type=int, default=2021, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--batch-size', type=int, default=1, help='batch size of dataloader')
parser.add_argument(
'--samples-path',
type=str,
default=None,
help='path to store images. If not given, remove it after evaluation\
finished')
parser.add_argument(
'--sample-model',
type=str,
default='ema',
help='use which mode (ema/orig) in sampling')
parser.add_argument(
'--eval',
nargs='*',
type=str,
default=None,
help='select the metrics you want to access')
parser.add_argument(
'--online',
action='store_true',
help='whether to use online mode for evaluation')
args = parser.parse_args()
return args
@torch.no_grad()
def single_gpu_evaluation(model,
data_loader,
metrics,
logger,
basic_table_info,
batch_size,
samples_path=None,
**kwargs):
"""Evaluate model with a single gpu.
This method evaluate model with a single gpu and displays eval progress
bar.
Args:
model (nn.Module): Model to be tested.
data_loader (nn.Dataloader): PyTorch data loader.
metrics (list): List of metric objects.
logger (Logger): logger used to record results of evaluation.
basic_table_info (dict): Dictionary containing the basic information \
of the metric table include training configuration and ckpt.
batch_size (int): Batch size of images fed into metrics.
samples_path (str): Used to save generated images. If it's none, we'll
give it a default directory and delete it after finishing the
evaluation. Default to None.
kwargs (dict): Other arguments.
"""
# decide samples path
delete_samples_path = False
if samples_path:
mmcv.mkdir_or_exist(samples_path)
else:
temp_path = './work_dirs/temp_samples'
# if temp_path exists, add suffix
suffix = 1
samples_path = temp_path
while os.path.exists(samples_path):
samples_path = temp_path + '_' + str(suffix)
suffix += 1
os.makedirs(samples_path)
delete_samples_path = True
# sample images
num_exist = len(
list(
mmcv.scandir(
samples_path, suffix=('.jpg', '.png', '.jpeg', '.JPEG'))))
if basic_table_info['num_samples'] > 0:
max_num_images = basic_table_info['num_samples']
else:
max_num_images = max(metric.num_images for metric in metrics)
num_needed = max(max_num_images - num_exist, 0)
if num_needed > 0:
mmcv.print_log(f'Sample {num_needed} fake images for evaluation',
'mmgen')
# define mmcv progress bar
pbar = mmcv.ProgressBar(num_needed)
# select key to fetch fake images
target_domain = basic_table_info['target_domain']
source_domain = basic_table_info['source_domain']
# if no images, `num_needed` should be zero
data_loader_iter = iter(data_loader)
for begin in range(0, num_needed, batch_size):
end = min(begin + batch_size, max_num_images)
# for translation model, we feed them images from dataloader
data_batch = next(data_loader_iter)
output_dict = model(
data_batch[f'img_{source_domain}'],
test_mode=True,
target_domain=target_domain)
fakes = output_dict['target']
pbar.update(end - begin)
for i in range(end - begin):
images = fakes[i:i + 1]
images = ((images + 1) / 2)
images = images[:, [2, 1, 0], ...]
images = images.clamp_(0, 1)
image_name = str(begin + i) + '.png'
save_image(images, os.path.join(samples_path, image_name))
if num_needed > 0:
sys.stdout.write('\n')
# return if only save sampled images
if len(metrics) == 0:
return
# empty cache to release GPU memory
torch.cuda.empty_cache()
fake_dataloader = make_vanilla_dataloader(samples_path, batch_size)
for metric in metrics:
mmcv.print_log(f'Evaluate with {metric.name} metric.', 'mmgen')
metric.prepare()
# feed in real images
for data in data_loader:
reals = data[f'img_{target_domain}']
num_left = metric.feed(reals, 'reals')
if num_left <= 0:
break
# feed in fake images
for data in fake_dataloader:
fakes = data['real_img']
num_left = metric.feed(fakes, 'fakes')
if num_left <= 0:
break
metric.summary()
table_str = make_metrics_table(basic_table_info['train_cfg'],
basic_table_info['ckpt'],
basic_table_info['sample_model'], metrics)
logger.info('\n' + table_str)
if delete_samples_path:
shutil.rmtree(samples_path)
@torch.no_grad()
def single_gpu_online_evaluation(model, data_loader, metrics, logger,
basic_table_info, batch_size, **kwargs):
"""Evaluate model with a single gpu in online mode.
This method evaluate model with a single gpu and displays eval progress
bar. Different form `single_gpu_evaluation`, this function will not save
the images or read images from disks. Namely, there do not exist any IO
operations in this function. Thus, in general, `online` mode will achieve a
faster evaluation. However, this mode will take much more memory cost.
Therefore this evaluation function is recommended to evaluate your model
with a single metric.
Args:
model (nn.Module): Model to be tested.
data_loader (nn.Dataloader): PyTorch data loader.
metrics (list): List of metric objects.
logger (Logger): logger used to record results of evaluation.
basic_table_info (dict): Dictionary containing the basic information \
of the metric table include training configuration and ckpt.
batch_size (int): Batch size of images fed into metrics.
kwargs (dict): Other arguments.
"""
# sample images
max_num_images = 0 if len(metrics) == 0 else max(metric.num_fake_need
for metric in metrics)
pbar = mmcv.ProgressBar(max_num_images)
# select key to fetch images
target_domain = basic_table_info['target_domain']
source_domain = basic_table_info['source_domain']
for metric in metrics:
mmcv.print_log(f'Evaluate with {metric.name} metric.', 'mmgen')
metric.prepare()
# feed reals and fakes
data_loader_iter = iter(data_loader)
for begin in range(0, max_num_images, batch_size):
end = min(begin + batch_size, max_num_images)
# for translation model, we feed them images from dataloader
data_batch = next(data_loader_iter)
output_dict = model(
data_batch[f'img_{source_domain}'],
test_mode=True,
target_domain=target_domain)
fakes = output_dict['target']
reals = data_batch[f'img_{target_domain}']
pbar.update(end - begin)
for metric in metrics:
metric.feed(reals, 'reals')
metric.feed(fakes, 'fakes')
for metric in metrics:
metric.summary()
table_str = make_metrics_table(basic_table_info['train_cfg'],
basic_table_info['ckpt'],
basic_table_info['sample_model'], metrics)
logger.info('\n' + table_str)
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
dirname = os.path.dirname(args.checkpoint)
ckpt = os.path.basename(args.checkpoint)
if 'http' in args.checkpoint:
log_path = None
else:
log_name = ckpt.split('.')[0] + '_eval_log' + '.txt'
log_path = os.path.join(dirname, log_name)
logger = get_root_logger(
log_file=log_path, log_level=cfg.log_level, file_mode='a')
logger.info('evaluation')
# set random seeds
if args.seed is not None:
set_random_seed(args.seed, deterministic=args.deterministic)
# build the model and load checkpoint
model = build_model(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
assert isinstance(model, BaseTranslationModel)
# sanity check for models without ema
if not model.use_ema:
args.sample_model = 'orig'
mmcv.print_log(f'Sampling model: {args.sample_model}', 'mmgen')
model.eval()
_ = load_checkpoint(model, args.checkpoint, map_location='cpu')
model = MMDataParallel(model, device_ids=[0])
# build metrics
if args.eval:
if args.eval[0] == 'none':
# only sample images
metrics = []
assert args.num_samples is not None and args.num_samples > 0
else:
metrics = [
build_metric(cfg.metrics[metric]) for metric in args.eval
]
else:
metrics = [build_metric(cfg.metrics[metric]) for metric in cfg.metrics]
# get source domain and target domain
target_domain = args.target_domain
if target_domain is None:
target_domain = model.module._default_domain
source_domain = model.module.get_other_domains(target_domain)[0]
basic_table_info = dict(
train_cfg=os.path.basename(cfg._filename),
ckpt=ckpt,
sample_model=args.sample_model,
source_domain=source_domain,
target_domain=target_domain)
# build the dataloader
if len(metrics) == 0:
basic_table_info['num_samples'] = args.num_samples
data_loader = None
else:
basic_table_info['num_samples'] = -1
if cfg.data.get('test', None):
dataset = build_dataset(cfg.data.test)
else:
dataset = build_dataset(cfg.data.train)
data_loader = build_dataloader(
dataset,
samples_per_gpu=args.batch_size,
workers_per_gpu=cfg.data.get('val_workers_per_gpu',
cfg.data.workers_per_gpu),
dist=False,
shuffle=True)
if args.online:
single_gpu_online_evaluation(model, data_loader, metrics, logger,
basic_table_info, args.batch_size)
else:
single_gpu_evaluation(model, data_loader, metrics, logger,
basic_table_info, args.batch_size,
args.samples_path)
if __name__ == '__main__':
main()