forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetric.h
191 lines (161 loc) · 4.5 KB
/
metric.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*!
* Copyright (c) 2016 by Contributors
* \file base.h
* \brief metrics defined
* \author Zhang Chen
*/
#ifndef MXNET_CPP_METRIC_H_
#define MXNET_CPP_METRIC_H_
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>
#include "mxnet-cpp/ndarray.h"
#include "dmlc/logging.h"
namespace mxnet {
namespace cpp {
class EvalMetric {
public:
explicit EvalMetric(const std::string& name, int num = 0)
: name(name), num(num) {}
virtual void Update(NDArray labels, NDArray preds) = 0;
void Reset() {
num_inst = 0;
sum_metric = 0.0f;
}
float Get() { return sum_metric / num_inst; }
void GetNameValue();
protected:
std::string name;
int num;
float sum_metric = 0.0f;
int num_inst = 0;
static void CheckLabelShapes(NDArray labels, NDArray preds,
bool strict = false) {
if (strict) {
CHECK_EQ(Shape(labels.GetShape()), Shape(preds.GetShape()));
} else {
CHECK_EQ(labels.Size(), preds.Size());
}
}
};
class Accuracy : public EvalMetric {
public:
Accuracy() : EvalMetric("accuracy") {}
void Update(NDArray labels, NDArray preds) override {
CHECK_EQ(labels.GetShape().size(), 1);
mx_uint len = labels.GetShape()[0];
std::vector<mx_float> pred_data(len);
std::vector<mx_float> label_data(len);
preds.ArgmaxChannel().SyncCopyToCPU(&pred_data, len);
labels.SyncCopyToCPU(&label_data, len);
for (mx_uint i = 0; i < len; ++i) {
sum_metric += (pred_data[i] == label_data[i]) ? 1 : 0;
num_inst += 1;
}
}
};
class LogLoss : public EvalMetric {
public:
LogLoss() : EvalMetric("logloss") {}
void Update(NDArray labels, NDArray preds) override {
static const float epsilon = 1e-15;
mx_uint len = labels.GetShape()[0];
mx_uint m = preds.GetShape()[1];
std::vector<mx_float> pred_data(len * m);
std::vector<mx_float> label_data(len);
preds.SyncCopyToCPU(&pred_data, pred_data.size());
labels.SyncCopyToCPU(&label_data, len);
for (mx_uint i = 0; i < len; ++i) {
sum_metric +=
-std::log(std::max(pred_data[i * m + label_data[i]], epsilon));
num_inst += 1;
}
}
};
class MAE : public EvalMetric {
public:
MAE() : EvalMetric("mae") {}
void Update(NDArray labels, NDArray preds) override {
CheckLabelShapes(labels, preds);
std::vector<mx_float> pred_data;
preds.SyncCopyToCPU(&pred_data);
std::vector<mx_float> label_data;
labels.SyncCopyToCPU(&label_data);
size_t len = preds.Size();
mx_float sum = 0;
for (size_t i = 0; i < len; ++i) {
sum += std::abs(pred_data[i] - label_data[i]);
}
sum_metric += sum / len;
++num_inst;
}
};
class MSE : public EvalMetric {
public:
MSE() : EvalMetric("mse") {}
void Update(NDArray labels, NDArray preds) override {
CheckLabelShapes(labels, preds);
std::vector<mx_float> pred_data;
preds.SyncCopyToCPU(&pred_data);
std::vector<mx_float> label_data;
labels.SyncCopyToCPU(&label_data);
size_t len = preds.Size();
mx_float sum = 0;
for (size_t i = 0; i < len; ++i) {
mx_float diff = pred_data[i] - label_data[i];
sum += diff * diff;
}
sum_metric += sum / len;
++num_inst;
}
};
class RMSE : public EvalMetric {
public:
RMSE() : EvalMetric("rmse") {}
void Update(NDArray labels, NDArray preds) override {
CheckLabelShapes(labels, preds);
std::vector<mx_float> pred_data;
preds.SyncCopyToCPU(&pred_data);
std::vector<mx_float> label_data;
labels.SyncCopyToCPU(&label_data);
size_t len = preds.Size();
mx_float sum = 0;
for (size_t i = 0; i < len; ++i) {
mx_float diff = pred_data[i] - label_data[i];
sum += diff * diff;
}
sum_metric += std::sqrt(sum / len);
++num_inst;
}
};
class PSNR : public EvalMetric {
public:
PSNR() : EvalMetric("psnr") {
}
void Update(NDArray labels, NDArray preds) override {
CheckLabelShapes(labels, preds);
std::vector<mx_float> pred_data;
preds.SyncCopyToCPU(&pred_data);
std::vector<mx_float> label_data;
labels.SyncCopyToCPU(&label_data);
size_t len = preds.Size();
mx_float sum = 0;
for (size_t i = 0; i < len; ++i) {
mx_float diff = pred_data[i] - label_data[i];
sum += diff * diff;
}
mx_float mse = sum / len;
if (mse > 0) {
sum_metric += 10 * std::log(255.0f / mse) / log10_;
} else {
sum_metric += 99.0f;
}
++num_inst;
}
private:
mx_float log10_ = std::log(10.0f);
};
} // namespace cpp
} // namespace mxnet
#endif // MXNET_CPP_METRIC_H_