|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import torch |
| 4 | + |
| 5 | +import helion |
| 6 | +import helion.language as hl |
| 7 | + |
| 8 | + |
| 9 | +def baseline_sum(x: torch.Tensor) -> torch.Tensor: |
| 10 | + return x.sum(-1) |
| 11 | + |
| 12 | + |
| 13 | +# Naive Reduction: Load the entire reduction dim at once, and reduce in reg. |
| 14 | +@helion.kernel( |
| 15 | + config=helion.Config( |
| 16 | + block_sizes=[[1]], |
| 17 | + reduction_loops=[None], |
| 18 | + num_warps=32, |
| 19 | + num_stages=4, |
| 20 | + indexing="block_ptr", |
| 21 | + ) |
| 22 | +) |
| 23 | +def longsum(x: torch.Tensor) -> torch.Tensor: |
| 24 | + m, _ = x.size() |
| 25 | + out = torch.empty([m], dtype=x.dtype, device=x.device) |
| 26 | + |
| 27 | + for tile_m in hl.tile(m): |
| 28 | + out[tile_m] = x[tile_m, :].sum(-1) |
| 29 | + return out |
| 30 | + |
| 31 | + |
| 32 | +# Looped reduction |
| 33 | +@helion.kernel( |
| 34 | + config=helion.Config( |
| 35 | + block_sizes=[[1]], |
| 36 | + reduction_loops=[ |
| 37 | + 32768 |
| 38 | + ], # [None] for naive reduction, [tile_size] for looped reduction |
| 39 | + num_warps=16, |
| 40 | + num_stages=5, |
| 41 | + indexing="pointer", |
| 42 | + ) |
| 43 | +) |
| 44 | +def longsum_w_red_loop(x: torch.Tensor) -> torch.Tensor: |
| 45 | + m, _ = x.size() |
| 46 | + out = torch.empty([m], dtype=x.dtype, device=x.device) |
| 47 | + |
| 48 | + for tile_m in hl.tile(m): |
| 49 | + out[tile_m] = x[tile_m, :].sum(-1) |
| 50 | + return out |
| 51 | + |
| 52 | + |
| 53 | +# This generates the same code as above, but manually implements looped reduction. |
| 54 | +@helion.kernel( |
| 55 | + config=helion.Config( |
| 56 | + block_sizes=[[32768], [1]], num_warps=16, num_stages=5, indexing="pointer" |
| 57 | + ) |
| 58 | +) |
| 59 | +def longsum_manual(x: torch.Tensor) -> torch.Tensor: |
| 60 | + m, n = x.size() |
| 61 | + out = torch.empty([m], dtype=x.dtype, device=x.device) |
| 62 | + |
| 63 | + # Call register_block_size to know block_size_n outside of the reduction loop. |
| 64 | + block_size_n = hl.register_block_size(n) |
| 65 | + |
| 66 | + for tile_m in hl.tile(m): |
| 67 | + acc = hl.zeros([tile_m, block_size_n], dtype=x.dtype) |
| 68 | + for tile_n in hl.tile(n, block_size=block_size_n): # Reduction loop |
| 69 | + acc += x[tile_m, tile_n] |
| 70 | + out[tile_m] = acc.sum(-1) |
| 71 | + return out |
| 72 | + |
| 73 | + |
| 74 | +def check(m: int, n: int) -> None: |
| 75 | + from triton.testing import do_bench |
| 76 | + |
| 77 | + x = torch.randn([m, n], device="cuda", dtype=torch.float32) |
| 78 | + |
| 79 | + helion_out = longsum(x) |
| 80 | + torch.testing.assert_close(helion_out, baseline_sum(x), rtol=1e-2, atol=1e-1) |
| 81 | + print("✅ Results Match ✅ naive reduction") |
| 82 | + |
| 83 | + helion_red_loop_out = longsum_w_red_loop(x) |
| 84 | + torch.testing.assert_close( |
| 85 | + helion_red_loop_out, baseline_sum(x), rtol=1e-2, atol=1e-1 |
| 86 | + ) |
| 87 | + print("✅ Results Match ✅ Reduction Loop") |
| 88 | + |
| 89 | + helion_manual_out = longsum_manual(x) |
| 90 | + torch.testing.assert_close(helion_manual_out, baseline_sum(x), rtol=1e-2, atol=1e-1) |
| 91 | + print("✅ Results Match ✅ Manual Reduction Loop") |
| 92 | + |
| 93 | + sec = do_bench(lambda: longsum(x)) |
| 94 | + loop_sec = do_bench(lambda: longsum_w_red_loop(x)) |
| 95 | + manual_loop_sec = do_bench(lambda: longsum_manual(x)) |
| 96 | + baseline_sec = do_bench(lambda: baseline_sum(x)) |
| 97 | + print( |
| 98 | + f"Helion Naive time: {sec:.4f}s, Helion Looped Time: {loop_sec:.4f}, Helion Manual Loop Time: {manual_loop_sec:.4f} torch time: {baseline_sec:.4f}, speedup: {baseline_sec / sec:.2f}x {baseline_sec / loop_sec:.2f}x {baseline_sec / manual_loop_sec:.2f}x" |
| 99 | + ) |
| 100 | + |
| 101 | + |
| 102 | +def main() -> None: |
| 103 | + check(4, 130000) # seq_len = 128k |
| 104 | + |
| 105 | + |
| 106 | +if __name__ == "__main__": |
| 107 | + main() |
0 commit comments