|
| 1 | +#include <torch/torch.h> |
| 2 | +#include "core/conversion/converters/converters.h" |
| 3 | +#include "core/util/prelude.h" |
| 4 | + |
| 5 | +namespace trtorch { |
| 6 | +namespace core { |
| 7 | +namespace conversion { |
| 8 | +namespace converters { |
| 9 | +namespace impl { |
| 10 | +namespace { |
| 11 | + |
| 12 | +// clang-format off |
| 13 | +auto quantization_registrations TRTORCH_UNUSED = RegisterNodeConversionPatterns() |
| 14 | + .pattern({"aten::fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor)", |
| 15 | + [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { |
| 16 | + auto input = args[0].ITensorOrFreeze(ctx); |
| 17 | + auto scale = args[1].unwrapToScalar().to<float>(); |
| 18 | + auto scaleTensor = tensor_to_const(ctx, torch::tensor({scale})); |
| 19 | + |
| 20 | + // Add and configure a QuantizeLayer. |
| 21 | + nvinfer1::IQuantizeLayer* quantize_layer = ctx->net->addQuantize(*input, *scaleTensor); |
| 22 | + // Set an invalid axis |
| 23 | + quantize_layer->setAxis(1); |
| 24 | + |
| 25 | + // Add and configure DequantizeLayer |
| 26 | + nvinfer1::IDequantizeLayer* dequantize_layer = ctx->net->addDequantize(*quantize_layer->getOutput(0), *scaleTensor); |
| 27 | + dequantize_layer->setAxis(1); |
| 28 | + |
| 29 | + auto qdq_out = ctx->AssociateValueAndTensor(n->outputs()[0], dequantize_layer->getOutput(0)); |
| 30 | + LOG_DEBUG("[fake_quantize_per_tensor_affine] Output tensor shape: " << qdq_out->getDimensions()); |
| 31 | + |
| 32 | + return true; |
| 33 | + }}) |
| 34 | + .pattern({"aten::fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor)", |
| 35 | + [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool { |
| 36 | + auto input = args[0].ITensorOrFreeze(ctx); |
| 37 | + auto scale = args[1].ITensorOrFreeze(ctx); |
| 38 | + |
| 39 | + // Add and configure a QuantizeLayer. |
| 40 | + nvinfer1::IQuantizeLayer* quantize_layer = ctx->net->addQuantize(*input, *scale); |
| 41 | + // Set a channel axis=0 which represents output channels |
| 42 | + quantize_layer->setAxis(0); |
| 43 | + |
| 44 | + // Add and configure a DequantizeLayer. |
| 45 | + nvinfer1::IDequantizeLayer* dequantize_layer = ctx->net->addDequantize(*quantize_layer->getOutput(0), *scale); |
| 46 | + dequantize_layer->setAxis(0); |
| 47 | + auto qdq_out = ctx->AssociateValueAndTensor(n->outputs()[0], dequantize_layer->getOutput(0)); |
| 48 | + |
| 49 | + LOG_DEBUG("[fake_quantize_per_channel_affine] Ouput tensor shape: " << qdq_out->getDimensions()); |
| 50 | + |
| 51 | + return true; |
| 52 | + }}); |
| 53 | +// clang-format on |
| 54 | +} // namespace |
| 55 | +} // namespace impl |
| 56 | +} // namespace converters |
| 57 | +} // namespace conversion |
| 58 | +} // namespace core |
| 59 | +} // namespace trtorch |
0 commit comments