You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Count Sentiment training on a batch basis instead of a number of items trained. Separate very long items into their own batches to avoid OOM errors, especially on the ZH dataset
help='Model type to use. Options: %s'%" ".join(x.nameforxinModelType))
@@ -184,7 +184,8 @@ def build_argparse():
184
184
parser.add_argument('--dropout', default=0.5, type=float, help='Dropout value to use')
185
185
186
186
parser.add_argument('--batch_size', default=50, type=int, help='Batch size when training')
187
-
parser.add_argument('--dev_eval_steps', default=100000, type=int, help='Run the dev set after this many train steps. Set to 0 to only do it once per epoch')
187
+
parser.add_argument('--batch_single_item', default=200, type=int, help='Items of this size go in their own batch')
188
+
parser.add_argument('--dev_eval_batches', default=2000, type=int, help='Run the dev set after this many train batches. Set to 0 to only do it once per epoch')
0 commit comments