You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
------------------ 原始邮件 ------------------
发件人: "JunfengGo/SCALE-UP" ***@***.***>;
发送时间: 2024年12月27日(星期五) 下午2:57
***@***.***>;
***@***.******@***.***>;
主题: Re: [JunfengGo/SCALE-UP] 用test_BadNets训练CIFAR10数据集后并使用该代码得到的ROC并不理想的问题 (Issue #5)
请问有解决了吗,我这边测试的和你差不多
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you commented.Message ID: ***@***.***>
老师您好,我首先使用了test_BadNets.py训练CIFAR10数据集得到的训练日志如下:
==========Test result on benign test dataset==========
[2024-12-9_21:49:26] Top-1 correct / Total: 8709/10000, Top-1 accuracy: 0.8709, Top-5 correct / Total: 9949/10000, Top-5 accuracy: 0.9949, mean loss: 0.49871015548706055, time: 1.853926181793213
==========Test result on poisoned test dataset==========
[2024-12-9_21:49:28] Top-1 correct / Total: 10000/10000, Top-1 accuracy: 1.0, Top-5 correct / Total: 10000/10000, Top-5 accuracy: 1.0, mean loss: 0.00047622263082303107, time: 1.9681081771850586
之后,我保存了中毒数据集为pth文件,并将其加载到此repo的dataloader2tensor_CIFAR10.py得到了poisoned_test_samples.pth文件
然后,我将训练好的中毒模型和bengin_labels.pth这一标签文件载入到torch_model_wrapper.py之后,再分别用bengin_test_samples和poisoned_test_samples运行该代码得到了tiny_benign.npy和tiny_bd.npy文件
最后,我将tiny_benign和tiny_bd加载进test.py文件中获得AUC_SCORE和ROC图像,然而得到的结果十分的糟糕,我不知道哪一步除了问题,希望老师您能为我指出
The text was updated successfully, but these errors were encountered: