Skip to content

Style Conversion Module #136

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,23 @@ python generate.py --outdir=out --projected_w=out/projected_w.npz \
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
```

## Image Conversion
To convert image, we need target image that want to convert and `W` that contains style information.

First, We extract `W` from 2 sample images. One(`sample_after`) is an image expressing a specific style(ex. smile, skin, age etc.),
The other(`sample_before`) doesn't have that style (the more completely identical other features here, the better).

- input image : `sample before`, `sample after`, `target before`
- output `W` : 'get_w.pt' (extracted Style
by subtracting `sample_before` from `sample_after`)
- output image : `target after`

```.bash
python conversion.py --sample_before s_b.png --sample_after s_a.png \
--target_before t_b.png --target_after t_a.png \
--network https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqdog.pkl
```

## Using networks from Python

You can use pre-trained networks in your own Python code as follows:
Expand Down
197 changes: 197 additions & 0 deletions conversion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import dnnlib
import legacy

import PIL
from PIL import Image

import numpy as np

import argparse
import copy
import pickle
import matplotlib.pyplot as plt
# from tqdm import tqdm

def parse_command_line_args():
parser = argparse.ArgumentParser()
parser.add_argument('--sample_before', required=True, help='image that already has the W')
parser.add_argument('--sample_after', required=True, help='image that does not inclue the W')
parser.add_argument('--target_before', required=True, help='image that you want to apply W')
parser.add_argument('--target_after', required=True, help='path of saving result')
parser.add_argument('--network', required=True, help='pkl - url address')
return vars(parser.parse_args())

def run(**kwargs):
sample_before = kwargs['sample_before']
sample_after = kwargs['sample_after']
target_before = kwargs['target_before']
target_after = kwargs['target_after']


with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device)

# install plug-in
z = torch.randn([1, G.z_dim]).cuda()
c = None
img = G(z,c)


before = sample_before
after = sample_after

w_before = projection(before, 'Type-SB(Sample|Before)')
w_after = projection(after, 'Type-SA(Sample|After)')

w = w_after - w_before # age vector
torch.save(w, 'get_w.pt')

target = target_before

w_target_before = projection(target, 'Type-TB(Target|Before)')
w_target_after = w_target_before + w
gen_target_after = generation(w_target_after,G)
img = Image.fromarray(gen_target_after)
img.save(target_after)


def projection(img_path, id):
id = id
img = Image.open(img_path).convert('RGB')
w, h = img.size
s = min(w,h)

#------------------------------#
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device)
#------------------------------#
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
img = img.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS)
img_uint8 = np.array(img, dtype=np.uint8)

G_eval = copy.deepcopy(G).eval().requires_grad_(False).to(device)

# Compute w stats
z_samples = np.random.randn(10000, G_eval.z_dim) # G_eval.z_dim == 512, (10000,512)
w_samples = G_eval.mapping(torch.from_numpy(z_samples).to(device), None)
w_samples = w_samples[:,:1,:].cpu().numpy().astype(np.float32)
w_avg = np.mean(w_samples, axis=0, keepdims=True)
w_std = (np.sum((w_samples - w_avg)**2)/10000)**0.5

# Setup noise inputs
noise_bufs = { name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name }

# Load VGG16 feature detector
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
with dnnlib.util.open_url(url) as f:
vgg16 = torch.jit.load(f).eval().to(device)

# Extract features for target image

img_tensor = torch.tensor(img_uint8.transpose([2,0,1]), device=device)
img_tensor = img_tensor.unsqueeze(0).to(device).to(torch.float32)
if img_tensor.shape[2] > 256:
img_tensor = F.interpolate(img_tensor, size=(256,256), mode='area') # Resize to pass through the vgg16 network.
img_features = vgg16(img_tensor, resize_images=False, return_lpips=True)
# Set optimizer and Initiate noise
num_steps = 1000
initial_learning_rate = 0.1
# ========================================= #

w_opt = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable
w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=device)
optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate)
# Init noise.
for buf in noise_bufs.values():
buf[:] = torch.randn_like(buf)
buf.requires_grad = True

# projection
num_steps = 1000
lr_rampdown_length = 0.25
lr_rampup_length = 0.05
initial_noise_factor = 0.05
noise_ramp_length = 0.75
regularize_noise_weight = 1e5
# ========================================= #

for step in range(num_steps):
# Learning rate schedule.
t = step / num_steps
w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
lr = initial_learning_rate * lr_ramp
for param_group in optimizer.param_groups:
param_group['lr'] = lr

# Synthesize image from opt_w
w_noise = torch.randn_like(w_opt) * w_noise_scale
ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1])
synth_images = G.synthesis(ws, noise_mode='const')

# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
synth_images = (synth_images + 1) * (255/2)
if synth_images.shape[2] > 256:
synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')

# Features for synth images.
synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
dist = (img_features - synth_features).square().sum() # Calculate the difference between two feature maps (target vs synth) generated through vgg.
# This is the point of projection.
# Noise regularization.
reg_loss = 0.0
for v in noise_bufs.values():
noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2
reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
loss = dist + reg_loss * regularize_noise_weight

# Step
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()

if step==0:
print('[{}] projection start - Reproducing the image.. '.format(id))
elif (step+1)%100 == 0 and (step+1) != num_steps:
print(f'step {step+1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}')
elif (step+1) == num_steps:
print('projection clear')

# Save projected W for each optimization step.
w_out[step] = w_opt.detach()[0]

# Normalize noise.
with torch.no_grad():
for buf in noise_bufs.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()

projected_w_steps = w_out.repeat([1, G.mapping.num_ws, 1])
projected_w = projected_w_steps[-1]
return projected_w

def generation(w,G):
synth_image = G.synthesis(w.unsqueeze(0), noise_mode='const')
synth_image = (synth_image + 1) * (255/2)
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
print('Finished creating a new image with the style(W) applied')
return synth_image



if __name__ == '__main__':
args = parse_command_line_args()
network_pkl = args['network']
device = torch.device('cuda')
run(**args)