The official code for the paper "S2Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification"
pip install -i requirement.txt
Download HSI datasets and put them into the ./data
directory. For example:
'./data/IndianPine.mat'
'./data/Pavia.mat'
'./data/Houston.mat'
'./data/WHU-Hi-LongKou/WHU_Hi_LongKou.mat'
Data download link: https://pan.baidu.com/s/18wTlU9ERczOfUo8WVoHVnA?pwd=aak6 Password: aak6
CUDA_VISIBLE_DEVICES=0 python demo_mamba.py --dataset='Indian' --epoches=400 --patches=7 --sess s2mamba --dropout 0.4 --lr 5e-4
CUDA_VISIBLE_DEVICES=0 python demo_mamba.py --dataset='Pavia' --epoches=400 --patches=11 --sess s2mamba --dropout 0.1 --lr 5e-4
CUDA_VISIBLE_DEVICES=0 python demo_mamba.py --dataset='Houston' --epoches=100 --patches=9 --sess s2mamba --dropout 0.1 --lr 1e-4
CUDA_VISIBLE_DEVICES=0 python demo_mamba.py --dataset='WHU_Hi_LongKou' --epoches=400 --patches=9 --sess s2mamba --dropout 0.4 --lr 5e-4
Our detection code is built upon SpectralFormer and Vmamba. We are very grateful to all the contributors to these codebases.
If you appreciate our work and find this repository helpful, please consider giving a citation:
@ARTICLE{s2mamba,
author={Wang, Guanchun and Zhang, Xiangrong and Peng, Zelin and Zhang, Tianyang and Jiao, Licheng},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={S2Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification},
year={2025},
pages={1-1},
doi={10.1109/TGRS.2025.3530993}}