Provides two classes for inverse-variance weighting (binary outcome & correlation-based) including two estimators for covariance among correlated effect sizes.
Requires the following python libraries:
- python3 (tested on 3.11.11)
- statsmodels >= 0.14.4
- scipy >= 1.14.1
- numpy >= 1.26.4
- pandas >= 2.2.3
Plotting utility requires the following python libraries:
- matplotlib >= 3.9.2
- seaborn >= 0.13.2
If you use conda, you can use the following command to create a specific environment with the above packages:
conda create -n "stats" python=3.11.11 statsmodels=0.14.4 scipy=1.14.1 numpy=1.26.4 pandas=2.2.3 matplotlib=3.9.2 seaborn=0.13.2
git clone https://github.com/SegataLab/inverse_var_weight.git
cd inverse_var_weight/tool_scripts_scores
This step will perform a set of analyses on over 7.800 public metagenomic samples linking the ZOE MB Health & ZOE MB Diet scores with BMI and multiple disease types.
First creates the necessary folders:
mkdir ../temporary ../bmi_pooled_analyses ../pooling_disease_meta_analyses
The run the Python script:
python ZOE_Score_Public_Data_Fundamental_Analyses.py
Step 3: perform pooled (meta-)analyses on the disease-related datasets, including accounting for correlated effect sizes
python diseased_pooled_analysis_weighted_scores.py
python generate_disease_centred_main_image.py