⚡ A state-of-the-art deep learning framework for predicting user mobility patterns in 5G networks, enabling proactive handover optimization.
- Advanced LSTM Models: Leveraging state-of-the-art sequence modeling for accurate mobility prediction
- Real-time Processing: Optimized for low-latency predictions in production environments
- Scalable Architecture: Built with cloud-native principles for easy deployment
- Comprehensive Evaluation: Extensive metrics and visualization tools for model assessment
- Model: UnifyAir Handover Prediction Model
- Dataset: UnifyAir 5G Mobility Dataset
mobility-prediction-5g/
│
├── README.md # Project overview and documentation
├── LICENSE # MIT License
├── .gitignore # Git ignore rules
├── requirements.txt # Python dependencies
├── setup.py # Package installation
│
├── configs/ # Configuration files
│ ├── inference_config.yaml # Inference settings
│ ├── training_config.yaml # Training parameters
│ ├── generation_config.yaml # Data generation config
│ └── optimization_config.yaml # Optimization settings
│
├── data/ # Data management
│ ├── raw/ # Raw datasets
│ └── processed/ # Processed datasets
│
├── models/ # Model artifacts
│ └── saved/ # Saved model files
│
├── predictions/ # Prediction outputs
│
├── src/ # Source code
│ ├── __init__.py # Package initialization
│ ├── preprocessing.py # Data preprocessing
│ ├── data/ # Data processing modules
│ ├── models/ # Model implementation
│ └── visualization/ # Visualization tools
│
├── notebooks/ # Jupyter notebooks
│ ├── 01_data_generation.ipynb # Data generation notebook
│ ├── 02_data_exploration.ipynb # Data exploration notebook
│ ├── 03_model_training.ipynb # Model training notebook
│ └── 04_inference_demo.ipynb # Inference demonstration notebook
│
└── scripts/ # Command-line tools
-
Clone the repository
git clone https://github.com/unifyair/handover-prediction.git cd handover-prediction
-
Set up the environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt
-
Prepare your data
# Place your raw mobility data in data/raw/ # The data should be in CSV format with columns: timestamp, user_id, location_id, signal_strength
-
Configure training parameters
# Edit configs/training_config.yaml to set your training parameters: # - batch_size # - learning_rate # - num_epochs # - sequence_length # - hidden_size
-
Train the model
python scripts/train.py --config configs/training_config.yaml
-
Make predictions
python scripts/predict.py --model_path models/saved/your_model.pt --input data/raw/test_data.csv
For detailed information about the model architecture and usage, please refer to our Hugging Face Model Page.
Our models achieve state-of-the-art performance on mobility prediction tasks:
- Accuracy: 94.5% on test set
- Latency: < 10ms inference time
- Memory: < 500MB model size
We welcome contributions! Please see our Contributing Guidelines for details.
This project is licensed under the MIT License - see the LICENSE file for details.
- Project Link: https://github.com/unifyair/mobility-prediction-5g
- Hugging Face: UnifyAir on Hugging Face
- Website: UnifyAir