Skip to content

How to do W2lKenLMDecoder Word-Level Time Alignment? #5394

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
abarcovschi opened this issue Dec 6, 2023 · 1 comment
Closed

How to do W2lKenLMDecoder Word-Level Time Alignment? #5394

abarcovschi opened this issue Dec 6, 2023 · 1 comment

Comments

@abarcovschi
Copy link

I am looking to extract word-level time alignment information when decoding a wav2vec2 output using W2lKenLMDecoder

The code for W2lKenLMDecoder is the following:

class W2lKenLMDecoder(W2lDecoder):
    def __init__(self, args, tgt_dict):
        super().__init__(args, tgt_dict)

        self.unit_lm = getattr(args, "unit_lm", False)

        if args.lexicon:
            self.lexicon = load_words(args.lexicon)
            self.word_dict = create_word_dict(self.lexicon)
            self.unk_word = self.word_dict.get_index("<unk>")

            self.lm = KenLM(args.kenlm_model, self.word_dict)
            self.trie = Trie(self.vocab_size, self.silence)

            start_state = self.lm.start(False)
            for i, (word, spellings) in enumerate(self.lexicon.items()):
                word_idx = self.word_dict.get_index(word)
                _, score = self.lm.score(start_state, word_idx)
                for spelling in spellings:
                    spelling_idxs = [tgt_dict.index(token) for token in spelling]
                    assert (
                        tgt_dict.unk() not in spelling_idxs
                    ), f"{spelling} {spelling_idxs}"
                    self.trie.insert(spelling_idxs, word_idx, score)
            self.trie.smear(SmearingMode.MAX)

            self.decoder_opts = LexiconDecoderOptions(
                beam_size=args.beam,
                beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
                beam_threshold=args.beam_threshold,
                lm_weight=args.lm_weight,
                word_score=args.word_score,
                unk_score=args.unk_weight,
                sil_score=args.sil_weight,
                log_add=False,
                criterion_type=self.criterion_type,
            )

            if self.asg_transitions is None:
                N = 768
                # self.asg_transitions = torch.FloatTensor(N, N).zero_()
                self.asg_transitions = []

            self.decoder = LexiconDecoder(
                self.decoder_opts,
                self.trie,
                self.lm,
                self.silence,
                self.blank,
                self.unk_word,
                self.asg_transitions,
                self.unit_lm,
            )
        else:
            assert args.unit_lm, "lexicon free decoding can only be done with a unit language model"
            from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions

            d = {w: [[w]] for w in tgt_dict.symbols}
            self.word_dict = create_word_dict(d)
            self.lm = KenLM(args.kenlm_model, self.word_dict)
            self.decoder_opts = LexiconFreeDecoderOptions(
                beam_size=args.beam,
                beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
                beam_threshold=args.beam_threshold,
                lm_weight=args.lm_weight,
                sil_score=args.sil_weight,
                log_add=False,
                criterion_type=self.criterion_type,
            )
            self.decoder = LexiconFreeDecoder(
                self.decoder_opts, self.lm, self.silence, self.blank, []
            )

    def get_timesteps(self, token_idxs: List[int]) -> List[int]:
        """Returns frame numbers corresponding to every non-blank token.

        Parameters
        ----------
        token_idxs : List[int]
            IDs of decoded tokens.

        Returns
        -------
        List[int]
            Frame numbers corresponding to every non-blank token.
        """
        timesteps = []
        for i, token_idx in enumerate(token_idxs):
            if token_idx == self.blank:
                continue
            if i == 0 or token_idx != token_idxs[i-1]:
                timesteps.append(i)
        return timesteps

    def decode(self, emissions):
        B, T, N = emissions.size()
        hypos = []
        for b in range(B):
            emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
            results = self.decoder.decode(emissions_ptr, T, N)

            nbest_results = results[: self.nbest]
            hypos.append(
                [
                    {
                        "tokens": self.get_tokens(result.tokens),
                        "score": result.score,
                        "timesteps": self.get_timesteps(result.tokens),
                        "words": [
                            self.word_dict.get_entry(x) for x in result.words if x >= 0
                        ],
                    }
                    for result in nbest_results
                ]
            )
        return hypos

From what I understand, the key is to somehow align "tokens" with "timesteps" in the hypos list of dicts. However, I am not sure how to extract word-level alignments from this information myself. Has anyone successfully implemented this functionality before? I would be very grateful if anyone could share their implementation with me or explain how it can be done.

@abarcovschi
Copy link
Author

I figured out how to implement this and have detailed my approach in #3627 (comment)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant