Skip to content

[Enhance] Support fast norm controlnet #88

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions diffengine/engine/hooks/fast_norm_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,12 @@ def before_train(self, runner) -> None:
model = model.module
if self.fuse_unet_ln:
self._replace_ln(model.unet, "model", model.device)
if hasattr(model, "controlnet"):
self._replace_ln(model.controlnet, "model", model.device)

self._replace_gn_forward(model.unet, "unet")
if hasattr(model, "controlnet"):
self._replace_gn_forward(model.controlnet, "unet")

if self.fuse_text_encoder_ln:
if hasattr(model, "text_encoder"):
Expand Down
44 changes: 44 additions & 0 deletions tests/test_engine/test_hooks/test_fast_norm_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,11 @@
from diffengine.engine.hooks import FastNormHook
from diffengine.models.editors import (
SDDataPreprocessor,
SDXLControlNetDataPreprocessor,
SDXLDataPreprocessor,
StableDiffusion,
StableDiffusionXL,
StableDiffusionXLControlNet,
)
from diffengine.models.losses import L2Loss
from diffengine.models.utils import WhiteNoise
Expand All @@ -31,6 +33,12 @@ def setUp(self) -> None:
name="SDDataPreprocessor", module=SDDataPreprocessor)
MODELS.register_module(
name="SDXLDataPreprocessor", module=SDXLDataPreprocessor)
MODELS.register_module(
name="StableDiffusionXLControlNet",
module=StableDiffusionXLControlNet)
MODELS.register_module(
name="SDXLControlNetDataPreprocessor",
module=SDXLControlNetDataPreprocessor)
MODELS.register_module(name="L2Loss", module=L2Loss)
MODELS.register_module(name="WhiteNoise", module=WhiteNoise)
return super().setUp()
Expand All @@ -40,6 +48,8 @@ def tearDown(self) -> None:
MODELS.module_dict.pop("StableDiffusionXL")
MODELS.module_dict.pop("SDDataPreprocessor")
MODELS.module_dict.pop("SDXLDataPreprocessor")
MODELS.module_dict.pop("StableDiffusionXLControlNet")
MODELS.module_dict.pop("SDXLControlNetDataPreprocessor")
MODELS.module_dict.pop("L2Loss")
MODELS.module_dict.pop("WhiteNoise")
return super().tearDown()
Expand Down Expand Up @@ -98,3 +108,37 @@ def test_before_train(self) -> None:
assert isinstance(
runner.model.text_encoder_two.text_model.encoder.layers[
0].layer_norm1, FusedLayerNorm)

# Test StableDiffusionXLControlNet
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.model.type = "StableDiffusionXLControlNet"
cfg.model.model = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
cfg.model.controlnet_model = "hf-internal-testing/tiny-controlnet-sdxl"
runner = self.build_runner(cfg)
hook = FastNormHook(fuse_text_encoder_ln=True)
assert isinstance(
runner.model.unet.down_blocks[
1].attentions[0].transformer_blocks[0].norm1, nn.LayerNorm)
assert isinstance(
runner.model.controlnet.down_blocks[
1].attentions[0].transformer_blocks[0].norm1, nn.LayerNorm)
assert isinstance(
runner.model.text_encoder_one.text_model.encoder.layers[
0].layer_norm1, nn.LayerNorm)
assert isinstance(
runner.model.text_encoder_two.text_model.encoder.layers[
0].layer_norm1, nn.LayerNorm)
# replace norm
hook.before_train(runner)
assert isinstance(
runner.model.unet.down_blocks[
1].attentions[0].transformer_blocks[0].norm1, FusedLayerNorm)
assert isinstance(
runner.model.controlnet.down_blocks[
1].attentions[0].transformer_blocks[0].norm1, FusedLayerNorm)
assert isinstance(
runner.model.text_encoder_one.text_model.encoder.layers[
0].layer_norm1, FusedLayerNorm)
assert isinstance(
runner.model.text_encoder_two.text_model.encoder.layers[
0].layer_norm1, FusedLayerNorm)