Skip to content

tscircuit/tscircuit-autorouter

Repository files navigation

@tscircuit/capacity-autorouter

An MIT-licensed full-pipeline PCB autorouter library for node.js and TypeScript projects. Part of tscircuit

View Online Playground · tscircuit docs · discord · twitter · try tscircuit online

Check out this short youtube explanation of this autorouter

Installation

bun add @tscircuit/capacity-autorouter

Usage as a Library

Basic Usage

import { CapacityMeshSolver } from "@tscircuit/capacity-autorouter"

// Create a solver with SimpleRouteJson input
const solver = new CapacityMeshSolver(simpleRouteJson)

// Run the solver until completion
while (!solver.solved && !solver.failed) {
  solver.step()
}

// Check if solving was successful
if (solver.failed) {
  console.error("Routing failed:", solver.error)
} else {
  // Get the routing results as SimpleRouteJson with traces
  const resultWithRoutes = solver.getOutputSimpleRouteJson()

  // Use the resulting routes in your application
  console.log(
    `Successfully routed ${resultWithRoutes.traces?.length} connections`
  )
}

Input Format: SimpleRouteJson

The input to the autorouter is a SimpleRouteJson object with the following structure:

interface SimpleRouteJson {
  layerCount: number
  minTraceWidth: number
  obstacles: Obstacle[]
  connections: Array<SimpleRouteConnection>
  bounds: { minX: number; maxX: number; minY: number; maxY: number }
  traces?: SimplifiedPcbTraces // Optional for input
}

interface Obstacle {
  type: "rect"
  layers: string[]
  center: { x: number; y: number }
  width: number
  height: number
  connectedTo: string[] // TraceIds
}

interface SimpleRouteConnection {
  name: string
  pointsToConnect: Array<{ x: number; y: number; layer: string }>
}

Output Format

The getOutputSimpleRouteJson() method returns the original SimpleRouteJson with a populated traces property. The traces are represented as SimplifiedPcbTraces:

type SimplifiedPcbTraces = Array<{
  type: "pcb_trace"
  pcb_trace_id: string // TraceId
  route: Array<
    | {
        route_type: "wire"
        x: number
        y: number
        width: number
        layer: string
      }
    | {
        route_type: "via"
        x: number
        y: number
        to_layer: string
        from_layer: string
      }
  >
}>

Advanced Configuration

You can provide optional configuration parameters to the solver:

const solver = new CapacityMeshSolver(simpleRouteJson, {
  // Optional: Manually set capacity planning depth (otherwise automatically calculated)
  capacityDepth: 7,

  // Optional: Set the target minimum capacity for automatic depth calculation
  // Lower values result in finer subdivisions (higher depth)
  targetMinCapacity: 0.5,
})

By default, the solver will automatically calculate the optimal capacityDepth to achieve a target minimum capacity of 0.5 based on the board dimensions. This automatic calculation ensures that the smallest subdivision cells have an appropriate capacity for routing.

Visualization Support

For debugging or interactive applications, you can use the visualize() method to get a visualization of the current routing state:

// Get visualization data that can be rendered with graphics-debug
const visualization = solver.visualize()

System Architecture

flowchart LR
    subgraph HDR[High Density Route Solver]
        T1[ ] & T2[ ] & T3[ ] & T4[ ] & T5[ ] & T6[ ] & T7[ ] & T8[ ] & T9[ ]
        subgraph IS[HyperSingleIntraNodeSolver / SingleIntraNodeSolver]
            N1[ ] --> N2[ ]
            N2 --> N3[ ]
            N3 --> N4[ ]
            N4 --> N5[ ]
            N5 --> N6[ ]
            N6 --> N7[ ]
            N7 --> N8[ ]
            N8 --> N9[ ]
        end
        subgraph SHDR[SingleHighDensityRouteSolver]
        end
        T1 & T2 & T3 & T4 & T5 & T6 & T7 & T8 & T9 --> IS
        IS --> SHDR
    end

    NS[Node Solver] --> ES[Edge Solver]
    ES --> MES[Mesh Edge Solver]
    MES --> CPS[Capacity Planning Solver]
    CPS --> EPSS[Edge to Port Segment Solver]
    EPSS --> S2P[Segment to Point Solver]
    S2P --> SPO[Segment Point Optimizer]
    SPO --> HDR
Loading

The autorouter uses a multi-step approach that includes:

  1. Node Solving: Determines node placement
  2. Edge Solving: Creates connections between nodes
  3. Mesh Edge Solving: Refines connection patterns
  4. Capacity Planning: Allocates routing resources
  5. Edge to Port Segment Solving: Connects segments to ports
  6. Segment to Point Solving: Converts segments to exact point locations
  7. Segment Point Optimization: Optimizes point placements for better routing
  8. High Density Routing: Final detailed routing with obstacle avoidance

Development

To work on this library:

# Install dependencies
bun install

# Start the interactive development environment
bun run start

# Run tests
bun test

# Build the library
bun run build

License

See the LICENSE file for details.