forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 12
Feature/revpi 726: brcmfmac: backport fixes from stable #3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
linosanfilippo-kunbus
merged 5 commits into
RevolutionPi:revpi-4.19
from
iluminat23:feature/REVPI-726
Aug 11, 2020
Merged
Feature/revpi 726: brcmfmac: backport fixes from stable #3
linosanfilippo-kunbus
merged 5 commits into
RevolutionPi:revpi-4.19
from
iluminat23:feature/REVPI-726
Aug 11, 2020
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[ Upstream commit aaf6a5e ] Since we moved the drivers debugfs directory under ieee80211 debugfs the debugfs entries need to be added after wiphy_register() has been called. For most part that has been done accordingly, but for the debugfs entries added by SDIO it was not and failed silently. This patch fixes that by adding a bus-layer callback for it. Fixes: 856d5a0 ("brcmfmac: allocate struct brcmf_pub instance using wiphy_new()") Reported-by: Russel King <[email protected]> Reviewed-by: Franky Lin <[email protected]> Signed-off-by: Arend van Spriel <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Signed-off-by: Sasha Levin <[email protected]> Signed-off-by: Philipp Rosenberger <[email protected]>
[ Upstream commit a927e8d ] Currently if the call to brcmf_sdiod_set_backplane_window fails then error return path leaks mypkt. Fix this by returning by a new error path labelled 'out' that calls brcmu_pkt_buf_free_skb to free mypkt. Also remove redundant check on err before calling brcmf_sdiod_skbuff_write. Addresses-Coverity: ("Resource Leak") Fixes: a7c3aa1 ("brcmfmac: Remove brcmf_sdiod_addrprep()") Signed-off-by: Colin Ian King <[email protected]> Reviewed-by: Mukesh Ojha <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Signed-off-by: Sasha Levin <[email protected]> Signed-off-by: Philipp Rosenberger <[email protected]>
[ Upstream commit 216b440 ] The brcmu_pkt_buf_free_skb() function frees "pkt" so it leads to a static checker warning: drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c:1974 brcmf_sdio_readframes() error: dereferencing freed memory 'pkt' It looks like there was supposed to be a continue after we free "pkt". Fixes: 4754fce ("brcmfmac: streamline SDIO read frame routine") Signed-off-by: Dan Carpenter <[email protected]> Acked-by: Franky Lin <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Signed-off-by: Sasha Levin <[email protected]> Signed-off-by: Philipp Rosenberger <[email protected]>
[ Upstream commit 863844e ] With commit 216b440 ("brcmfmac: Fix use after free in brcmf_sdio_readframes()") applied, we see locking timeouts in brcmf_sdio_watchdog_thread(). brcmfmac: brcmf_escan_timeout: timer expired INFO: task brcmf_wdog/mmc1:621 blocked for more than 120 seconds. Not tainted 4.19.94-07984-g24ff99a0f713 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. brcmf_wdog/mmc1 D 0 621 2 0x00000000 last_sleep: 2440793077. last_runnable: 2440766827 [<c0aa1e60>] (__schedule) from [<c0aa2100>] (schedule+0x98/0xc4) [<c0aa2100>] (schedule) from [<c0853830>] (__mmc_claim_host+0x154/0x274) [<c0853830>] (__mmc_claim_host) from [<bf10c5b8>] (brcmf_sdio_watchdog_thread+0x1b0/0x1f8 [brcmfmac]) [<bf10c5b8>] (brcmf_sdio_watchdog_thread [brcmfmac]) from [<c02570b8>] (kthread+0x178/0x180) In addition to restarting or exiting the loop, it is also necessary to abort the command and to release the host. Fixes: 216b440 ("brcmfmac: Fix use after free in brcmf_sdio_readframes()") Cc: Dan Carpenter <[email protected]> Cc: Matthias Kaehlcke <[email protected]> Cc: Brian Norris <[email protected]> Cc: Douglas Anderson <[email protected]> Signed-off-by: Guenter Roeck <[email protected]> Reviewed-by: Douglas Anderson <[email protected]> Acked-by: [email protected] Acked-by: Dan Carpenter <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Signed-off-by: Sasha Levin <[email protected]> Signed-off-by: Philipp Rosenberger <[email protected]>
[ Upstream commit c576738 ] sup_wpa feature is getting after setting feature_disable flag. If firmware is supported sup_wpa feature, it's always enabled regardless of feature_disable flag. Fixes: b8a64f0 ("brcmfmac: support 4-way handshake offloading for WPA/WPA2-PSK") Signed-off-by: Jaehoon Chung <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Sasha Levin <[email protected]> Signed-off-by: Philipp Rosenberger <[email protected]>
linosanfilippo-kunbus
approved these changes
Aug 11, 2020
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
…rbage value [ Upstream commit 902c0b1 ] Currently, when the rule related to IDLETIMER is added, idletimer_tg timer structure is initialized by kmalloc on executing idletimer_tg_create function. However, in this process timer->timer_type is not defined to a specific value. Thus, timer->timer_type has garbage value and it occurs kernel panic. So, this commit fixes the panic by initializing timer->timer_type using kzalloc instead of kmalloc. Test commands: # iptables -A OUTPUT -j IDLETIMER --timeout 1 --label test $ cat /sys/class/xt_idletimer/timers/test Killed Splat looks like: BUG: KASAN: user-memory-access in alarm_expires_remaining+0x49/0x70 Read of size 8 at addr 0000002e8c7bc4c8 by task cat/917 CPU: 12 PID: 917 Comm: cat Not tainted 5.14.0+ #3 79940a339f71eb14fc81aee1757a20d5bf13eb0e Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: dump_stack_lvl+0x6e/0x9c kasan_report.cold+0x112/0x117 ? alarm_expires_remaining+0x49/0x70 __asan_load8+0x86/0xb0 alarm_expires_remaining+0x49/0x70 idletimer_tg_show+0xe5/0x19b [xt_IDLETIMER 11219304af9316a21bee5ba9d58f76a6b9bccc6d] dev_attr_show+0x3c/0x60 sysfs_kf_seq_show+0x11d/0x1f0 ? device_remove_bin_file+0x20/0x20 kernfs_seq_show+0xa4/0xb0 seq_read_iter+0x29c/0x750 kernfs_fop_read_iter+0x25a/0x2c0 ? __fsnotify_parent+0x3d1/0x570 ? iov_iter_init+0x70/0x90 new_sync_read+0x2a7/0x3d0 ? __x64_sys_llseek+0x230/0x230 ? rw_verify_area+0x81/0x150 vfs_read+0x17b/0x240 ksys_read+0xd9/0x180 ? vfs_write+0x460/0x460 ? do_syscall_64+0x16/0xc0 ? lockdep_hardirqs_on+0x79/0x120 __x64_sys_read+0x43/0x50 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f0cdc819142 Code: c0 e9 c2 fe ff ff 50 48 8d 3d 3a ca 0a 00 e8 f5 19 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24 RSP: 002b:00007fff28eee5b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f0cdc819142 RDX: 0000000000020000 RSI: 00007f0cdc032000 RDI: 0000000000000003 RBP: 00007f0cdc032000 R08: 00007f0cdc031010 R09: 0000000000000000 R10: 0000000000000022 R11: 0000000000000246 R12: 00005607e9ee31f0 R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 Fixes: 68983a3 ("netfilter: xtables: Add snapshot of hardidletimer target") Signed-off-by: Juhee Kang <[email protected]> Reviewed-by: Florian Westphal <[email protected]> Signed-off-by: Pablo Neira Ayuso <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
[ Upstream commit 8ef9dc0 ] We got the following lockdep splat while running fstests (specifically btrfs/003 and btrfs/020 in a row) with the new rc. This was uncovered by 87579e9 ("loop: use worker per cgroup instead of kworker") which converted loop to using workqueues, which comes with lockdep annotations that don't exist with kworkers. The lockdep splat is as follows: WARNING: possible circular locking dependency detected 5.14.0-rc2-custom+ #34 Not tainted ------------------------------------------------------ losetup/156417 is trying to acquire lock: ffff9c7645b02d38 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x84/0x600 but task is already holding lock: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0xba/0x7c0 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x28/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x163/0x3a0 path_openat+0x74d/0xa40 do_filp_open+0x9c/0x140 do_sys_openat2+0xb1/0x170 __x64_sys_openat+0x54/0x90 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #4 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0xba/0x7c0 blkdev_get_by_dev.part.0+0xd1/0x3c0 blkdev_get_by_path+0xc0/0xd0 btrfs_scan_one_device+0x52/0x1f0 [btrfs] btrfs_control_ioctl+0xac/0x170 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (uuid_mutex){+.+.}-{3:3}: __mutex_lock+0xba/0x7c0 btrfs_rm_device+0x48/0x6a0 [btrfs] btrfs_ioctl+0x2d1c/0x3110 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#11){.+.+}-{0:0}: lo_write_bvec+0x112/0x290 [loop] loop_process_work+0x25f/0xcb0 [loop] process_one_work+0x28f/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x266/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x1130/0x1dc0 lock_acquire+0xf5/0x320 flush_workqueue+0xae/0x600 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x650 [loop] lo_ioctl+0x29d/0x780 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/156417: #0: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop] stack backtrace: CPU: 8 PID: 156417 Comm: losetup Not tainted 5.14.0-rc2-custom+ #34 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0x10a/0x120 __lock_acquire+0x1130/0x1dc0 lock_acquire+0xf5/0x320 ? flush_workqueue+0x84/0x600 flush_workqueue+0xae/0x600 ? flush_workqueue+0x84/0x600 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x650 [loop] lo_ioctl+0x29d/0x780 [loop] ? __lock_acquire+0x3a0/0x1dc0 ? update_dl_rq_load_avg+0x152/0x360 ? lock_is_held_type+0xa5/0x120 ? find_held_lock.constprop.0+0x2b/0x80 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f645884de6b Usually the uuid_mutex exists to protect the fs_devices that map together all of the devices that match a specific uuid. In rm_device we're messing with the uuid of a device, so it makes sense to protect that here. However in doing that it pulls in a whole host of lockdep dependencies, as we call mnt_may_write() on the sb before we grab the uuid_mutex, thus we end up with the dependency chain under the uuid_mutex being added under the normal sb write dependency chain, which causes problems with loop devices. We don't need the uuid mutex here however. If we call btrfs_scan_one_device() before we scratch the super block we will find the fs_devices and not find the device itself and return EBUSY because the fs_devices is open. If we call it after the scratch happens it will not appear to be a valid btrfs file system. We do not need to worry about other fs_devices modifying operations here because we're protected by the exclusive operations locking. So drop the uuid_mutex here in order to fix the lockdep splat. A more detailed explanation from the discussion: We are worried about rm and scan racing with each other, before this change we'll zero the device out under the UUID mutex so when scan does run it'll make sure that it can go through the whole device scan thing without rm messing with us. We aren't worried if the scratch happens first, because the result is we don't think this is a btrfs device and we bail out. The only case we are concerned with is we scratch _after_ scan is able to read the superblock and gets a seemingly valid super block, so lets consider this case. Scan will call device_list_add() with the device we're removing. We'll call find_fsid_with_metadata_uuid() and get our fs_devices for this UUID. At this point we lock the fs_devices->device_list_mutex. This is what protects us in this case, but we have two cases here. 1. We aren't to the device removal part of the RM. We found our device, and device name matches our path, we go down and we set total_devices to our super number of devices, which doesn't affect anything because we haven't done the remove yet. 2. We are past the device removal part, which is protected by the device_list_mutex. Scan doesn't find the device, it goes down and does the if (fs_devices->opened) return -EBUSY; check and we bail out. Nothing about this situation is ideal, but the lockdep splat is real, and the fix is safe, tho admittedly a bit scary looking. Reviewed-by: Anand Jain <[email protected]> Signed-off-by: Josef Bacik <[email protected]> Reviewed-by: David Sterba <[email protected]> [ copy more from the discussion ] Signed-off-by: David Sterba <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
[ Upstream commit bc39a69 ] Limit when FPU is enabled to only functions that does FPU operations for dcn20_resource_construct, which gets called during driver initialization. Enabling FPU operation disables preemption. Sleeping functions(mutex (un)lock, memory allocation using GFP_KERNEL, etc.) should not be called when preemption is disabled. Fixes the following case caught by enabling CONFIG_DEBUG_ATOMIC_SLEEP in kernel config [ 1.338434] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:281 [ 1.347395] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 197, name: systemd-udevd [ 1.356356] CPU: 7 PID: 197 Comm: systemd-udevd Not tainted 5.13.0+ #3 [ 1.356358] Hardware name: System manufacturer System Product Name/PRIME X570-PRO, BIOS 3405 02/01/2021 [ 1.356360] Call Trace: [ 1.356361] dump_stack+0x6b/0x86 [ 1.356366] ___might_sleep.cold+0x87/0x98 [ 1.356370] __might_sleep+0x4b/0x80 [ 1.356372] mutex_lock+0x21/0x50 [ 1.356376] smu_get_uclk_dpm_states+0x3f/0x80 [amdgpu] [ 1.356538] pp_nv_get_uclk_dpm_states+0x35/0x50 [amdgpu] [ 1.356711] init_soc_bounding_box+0xf9/0x210 [amdgpu] [ 1.356892] ? create_object+0x20d/0x340 [ 1.356897] ? dcn20_resource_construct+0x46f/0xd30 [amdgpu] [ 1.357077] dcn20_resource_construct+0x4b1/0xd30 [amdgpu] ... Tested on: 5700XT (NAVI10 0x1002:0x731F 0x1DA2:0xE410 0xC1) Cc: Christian König <[email protected]> Cc: Hersen Wu <[email protected]> Cc: Anson Jacob <[email protected]> Cc: Harry Wentland <[email protected]> Reviewed-by: Rodrigo Siqueira <[email protected]> Tested-by: Daniel Wheeler <[email protected]> Acked-by: Agustin Gutierrez <[email protected]> Signed-off-by: Anson Jacob <[email protected]> Signed-off-by: Alex Deucher <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
…eam state [ Upstream commit b7b1d02 ] The internal stream state sets the timeout to 120 seconds 2 seconds after the creation of the flow, attach this internal stream state to the IPS_ASSURED flag for consistent event reporting. Before this patch: [NEW] udp 17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 [UNREPLIED] src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [UPDATE] udp 17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [UPDATE] udp 17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED] [DESTROY] udp 17 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED] Note IPS_ASSURED for the flow not yet in the internal stream state. after this update: [NEW] udp 17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 [UNREPLIED] src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [UPDATE] udp 17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [UPDATE] udp 17 120 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED] [DESTROY] udp 17 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED] Before this patch, short-lived UDP flows never entered IPS_ASSURED, so they were already candidate flow to be deleted by early_drop under stress. Before this patch, IPS_ASSURED is set on regardless the internal stream state, attach this internal stream state to IPS_ASSURED. packet #1 (original direction) enters NEW state packet #2 (reply direction) enters ESTABLISHED state, sets on IPS_SEEN_REPLY paclet #3 (any direction) sets on IPS_ASSURED (if 2 seconds since the creation has passed by). Reported-by: Maciej Żenczykowski <[email protected]> Signed-off-by: Pablo Neira Ayuso <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
[ Upstream commit 6d0d1b5 ] If the device used as a serial console gets detached/attached at runtime, register_console() will try to call imx_uart_setup_console(), but this is not possible since it is marked as __init. For instance # cat /sys/devices/virtual/tty/console/active tty1 ttymxc0 # echo -n N > /sys/devices/virtual/tty/console/subsystem/ttymxc0/console # echo -n Y > /sys/devices/virtual/tty/console/subsystem/ttymxc0/console [ 73.166649] 8<--- cut here --- [ 73.167005] Unable to handle kernel paging request at virtual address c154d928 [ 73.167601] pgd = 55433e84 [ 73.167875] [c154d928] *pgd=8141941e(bad) [ 73.168304] Internal error: Oops: 8000000d [#1] SMP ARM [ 73.168429] Modules linked in: [ 73.168522] CPU: 0 PID: 536 Comm: sh Not tainted 5.15.0-rc6-00056-g3968ddcf05fb #3 [ 73.168675] Hardware name: Freescale i.MX6 Ultralite (Device Tree) [ 73.168791] PC is at imx_uart_console_setup+0x0/0x238 [ 73.168927] LR is at try_enable_new_console+0x98/0x124 [ 73.169056] pc : [<c154d928>] lr : [<c0196f44>] psr: a0000013 [ 73.169178] sp : c2ef5e70 ip : 00000000 fp : 00000000 [ 73.169281] r10: 00000000 r9 : c02cf970 r8 : 00000000 [ 73.169389] r7 : 00000001 r6 : 00000001 r5 : c1760164 r4 : c1e0fb08 [ 73.169512] r3 : c154d928 r2 : 00000000 r1 : efffcbd r0 : c1760164 [ 73.169641] Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none [ 73.169782] Control: 10c5387d Table: 8345406a DAC: 00000051 [ 73.169895] Register r0 information: non-slab/vmalloc memory [ 73.170032] Register r1 information: non-slab/vmalloc memory [ 73.170158] Register r2 information: NULL pointer [ 73.170273] Register r3 information: non-slab/vmalloc memory [ 73.170397] Register r4 information: non-slab/vmalloc memory [ 73.170521] Register r5 information: non-slab/vmalloc memory [ 73.170647] Register r6 information: non-paged memory [ 73.170771] Register r7 information: non-paged memory [ 73.170892] Register r8 information: NULL pointer [ 73.171009] Register r9 information: non-slab/vmalloc memory [ 73.171142] Register r10 information: NULL pointer [ 73.171259] Register r11 information: NULL pointer [ 73.171375] Register r12 information: NULL pointer [ 73.171494] Process sh (pid: 536, stack limit = 0xcd1ba82f) [ 73.171621] Stack: (0xc2ef5e70 to 0xc2ef6000) [ 73.171731] 5e60: ???????? ???????? ???????? ???????? [ 73.171899] 5e80: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.172059] 5ea0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.172217] 5ec0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.172377] 5ee0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.172537] 5f00: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.172698] 5f20: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.172856] 5f40: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.173016] 5f60: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.173177] 5f80: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.173336] 5fa0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.173496] 5fc0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.173654] 5fe0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.173826] [<c0196f44>] (try_enable_new_console) from [<c01984a8>] (register_console+0x10c/0x2ec) [ 73.174053] [<c01984a8>] (register_console) from [<c06e2c90>] (console_store+0x14c/0x168) [ 73.174262] [<c06e2c90>] (console_store) from [<c0383718>] (kernfs_fop_write_iter+0x110/0x1cc) [ 73.174470] [<c0383718>] (kernfs_fop_write_iter) from [<c02cf5f4>] (vfs_write+0x31c/0x548) [ 73.174679] [<c02cf5f4>] (vfs_write) from [<c02cf970>] (ksys_write+0x60/0xec) [ 73.174863] [<c02cf970>] (ksys_write) from [<c0100080>] (ret_fast_syscall+0x0/0x1c) [ 73.175052] Exception stack(0xc2ef5fa8 to 0xc2ef5ff0) [ 73.175167] 5fa0: ???????? ???????? ???????? ???????? ???????? ???????? [ 73.175327] 5fc0: ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? [ 73.175486] 5fe0: ???????? ???????? ???????? ???????? [ 73.175608] Code: 00000000 00000000 00000000 00000000 (00000000) [ 73.175744] ---[ end trace 9b75121265109bf1 ]--- A similar issue could be triggered by unbinding/binding the serial console device [*]. Drop __init so that imx_uart_setup_console() can be safely called at runtime. [*] https://lore.kernel.org/all/[email protected]/ Fixes: a3cb39d ("serial: core: Allow detach and attach serial device for console") Reviewed-by: Andy Shevchenko <[email protected]> Acked-by: Uwe Kleine-König <[email protected]> Signed-off-by: Stefan Agner <[email protected]> Signed-off-by: Francesco Dolcini <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
[ Upstream commit 54659ca ] when turning off a connection, lockdep complains with the following warning (a modprobe has been done but the same happens with a disconnection from NetworkManager, it's enough to trigger a cfg80211_disconnect call): [ 682.855867] ====================================================== [ 682.855877] WARNING: possible circular locking dependency detected [ 682.855887] 5.14.0-rc6+ #16 Tainted: G C OE [ 682.855898] ------------------------------------------------------ [ 682.855906] modprobe/1770 is trying to acquire lock: [ 682.855916] ffffb6d000332b00 (&pxmitpriv->lock){+.-.}-{2:2}, at: rtw_free_stainfo+0x52/0x4a0 [r8723bs] [ 682.856073] but task is already holding lock: [ 682.856081] ffffb6d0003336a8 (&pstapriv->sta_hash_lock){+.-.}-{2:2}, at: rtw_free_assoc_resources+0x48/0x110 [r8723bs] [ 682.856207] which lock already depends on the new lock. [ 682.856215] the existing dependency chain (in reverse order) is: [ 682.856223] -> #1 (&pstapriv->sta_hash_lock){+.-.}-{2:2}: [ 682.856247] _raw_spin_lock_bh+0x34/0x40 [ 682.856265] rtw_get_stainfo+0x9a/0x110 [r8723bs] [ 682.856389] rtw_xmit_classifier+0x27/0x130 [r8723bs] [ 682.856515] rtw_xmitframe_enqueue+0xa/0x20 [r8723bs] [ 682.856642] rtl8723bs_hal_xmit+0x3b/0xb0 [r8723bs] [ 682.856752] rtw_xmit+0x4ef/0x890 [r8723bs] [ 682.856879] _rtw_xmit_entry+0xba/0x350 [r8723bs] [ 682.856981] dev_hard_start_xmit+0xee/0x320 [ 682.856999] sch_direct_xmit+0x8c/0x330 [ 682.857014] __dev_queue_xmit+0xba5/0xf00 [ 682.857030] packet_sendmsg+0x981/0x1b80 [ 682.857047] sock_sendmsg+0x5b/0x60 [ 682.857060] __sys_sendto+0xf1/0x160 [ 682.857073] __x64_sys_sendto+0x24/0x30 [ 682.857087] do_syscall_64+0x3a/0x80 [ 682.857102] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 682.857117] -> #0 (&pxmitpriv->lock){+.-.}-{2:2}: [ 682.857142] __lock_acquire+0xfd9/0x1b50 [ 682.857158] lock_acquire+0xb4/0x2c0 [ 682.857172] _raw_spin_lock_bh+0x34/0x40 [ 682.857185] rtw_free_stainfo+0x52/0x4a0 [r8723bs] [ 682.857308] rtw_free_assoc_resources+0x53/0x110 [r8723bs] [ 682.857415] cfg80211_rtw_disconnect+0x4b/0x70 [r8723bs] [ 682.857522] cfg80211_disconnect+0x12e/0x2f0 [cfg80211] [ 682.857759] cfg80211_leave+0x2b/0x40 [cfg80211] [ 682.857961] cfg80211_netdev_notifier_call+0xa9/0x560 [cfg80211] [ 682.858163] raw_notifier_call_chain+0x41/0x50 [ 682.858180] __dev_close_many+0x62/0x100 [ 682.858195] dev_close_many+0x7d/0x120 [ 682.858209] unregister_netdevice_many+0x416/0x680 [ 682.858225] unregister_netdevice_queue+0xab/0xf0 [ 682.858240] unregister_netdev+0x18/0x20 [ 682.858255] rtw_unregister_netdevs+0x28/0x40 [r8723bs] [ 682.858360] rtw_dev_remove+0x24/0xd0 [r8723bs] [ 682.858463] sdio_bus_remove+0x31/0xd0 [mmc_core] [ 682.858532] device_release_driver_internal+0xf7/0x1d0 [ 682.858550] driver_detach+0x47/0x90 [ 682.858564] bus_remove_driver+0x77/0xd0 [ 682.858579] rtw_drv_halt+0xc/0x678 [r8723bs] [ 682.858685] __x64_sys_delete_module+0x13f/0x250 [ 682.858699] do_syscall_64+0x3a/0x80 [ 682.858715] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 682.858729] other info that might help us debug this: [ 682.858737] Possible unsafe locking scenario: [ 682.858744] CPU0 CPU1 [ 682.858751] ---- ---- [ 682.858758] lock(&pstapriv->sta_hash_lock); [ 682.858772] lock(&pxmitpriv->lock); [ 682.858786] lock(&pstapriv->sta_hash_lock); [ 682.858799] lock(&pxmitpriv->lock); [ 682.858812] *** DEADLOCK *** [ 682.858820] 5 locks held by modprobe/1770: [ 682.858831] #0: ffff8d870697d980 (&dev->mutex){....}-{3:3}, at: device_release_driver_internal+0x1a/0x1d0 [ 682.858869] #1: ffffffffbdbbf1c8 (rtnl_mutex){+.+.}-{3:3}, at: unregister_netdev+0xe/0x20 [ 682.858906] #2: ffff8d87054ee5e8 (&rdev->wiphy.mtx){+.+.}-{3:3}, at: cfg80211_netdev_notifier_call+0x9e/0x560 [cfg80211] [ 682.859131] #3: ffff8d870f2bc8f0 (&wdev->mtx){+.+.}-{3:3}, at: cfg80211_leave+0x20/0x40 [cfg80211] [ 682.859354] #4: ffffb6d0003336a8 (&pstapriv->sta_hash_lock){+.-.}-{2:2}, at: rtw_free_assoc_resources+0x48/0x110 [r8723bs] [ 682.859482] stack backtrace: [ 682.859491] CPU: 1 PID: 1770 Comm: modprobe Tainted: G C OE 5.14.0-rc6+ #16 [ 682.859507] Hardware name: LENOVO 80NR/Madrid, BIOS DACN25WW 08/20/2015 [ 682.859517] Call Trace: [ 682.859531] dump_stack_lvl+0x56/0x6f [ 682.859551] check_noncircular+0xdb/0xf0 [ 682.859579] __lock_acquire+0xfd9/0x1b50 [ 682.859606] lock_acquire+0xb4/0x2c0 [ 682.859623] ? rtw_free_stainfo+0x52/0x4a0 [r8723bs] [ 682.859752] ? mark_held_locks+0x48/0x70 [ 682.859769] ? rtw_free_stainfo+0x4a/0x4a0 [r8723bs] [ 682.859898] _raw_spin_lock_bh+0x34/0x40 [ 682.859914] ? rtw_free_stainfo+0x52/0x4a0 [r8723bs] [ 682.860039] rtw_free_stainfo+0x52/0x4a0 [r8723bs] [ 682.860171] rtw_free_assoc_resources+0x53/0x110 [r8723bs] [ 682.860286] cfg80211_rtw_disconnect+0x4b/0x70 [r8723bs] [ 682.860397] cfg80211_disconnect+0x12e/0x2f0 [cfg80211] [ 682.860629] cfg80211_leave+0x2b/0x40 [cfg80211] [ 682.860836] cfg80211_netdev_notifier_call+0xa9/0x560 [cfg80211] [ 682.861048] ? __lock_acquire+0x4dc/0x1b50 [ 682.861070] ? lock_is_held_type+0xa8/0x110 [ 682.861089] ? lock_is_held_type+0xa8/0x110 [ 682.861104] ? find_held_lock+0x2d/0x90 [ 682.861120] ? packet_notifier+0x173/0x300 [ 682.861141] ? lock_release+0xb3/0x250 [ 682.861160] ? packet_notifier+0x192/0x300 [ 682.861184] raw_notifier_call_chain+0x41/0x50 [ 682.861205] __dev_close_many+0x62/0x100 [ 682.861224] dev_close_many+0x7d/0x120 [ 682.861245] unregister_netdevice_many+0x416/0x680 [ 682.861264] ? find_held_lock+0x2d/0x90 [ 682.861284] unregister_netdevice_queue+0xab/0xf0 [ 682.861306] unregister_netdev+0x18/0x20 [ 682.861325] rtw_unregister_netdevs+0x28/0x40 [r8723bs] [ 682.861434] rtw_dev_remove+0x24/0xd0 [r8723bs] [ 682.861542] sdio_bus_remove+0x31/0xd0 [mmc_core] [ 682.861615] device_release_driver_internal+0xf7/0x1d0 [ 682.861637] driver_detach+0x47/0x90 [ 682.861656] bus_remove_driver+0x77/0xd0 [ 682.861674] rtw_drv_halt+0xc/0x678 [r8723bs] [ 682.861782] __x64_sys_delete_module+0x13f/0x250 [ 682.861801] ? lockdep_hardirqs_on_prepare+0xf3/0x170 [ 682.861817] ? syscall_enter_from_user_mode+0x20/0x70 [ 682.861836] do_syscall_64+0x3a/0x80 [ 682.861855] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 682.861873] RIP: 0033:0x7f6dbe85400b [ 682.861890] Code: 73 01 c3 48 8b 0d 6d 1e 0c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 3d 1e 0c 00 f7 d8 64 89 01 48 [ 682.861906] RSP: 002b:00007ffe7a82f538 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 [ 682.861923] RAX: ffffffffffffffda RBX: 000055a64693bd20 RCX: 00007f6dbe85400b [ 682.861935] RDX: 0000000000000000 RSI: 0000000000000800 RDI: 000055a64693bd88 [ 682.861946] RBP: 000055a64693bd20 R08: 0000000000000000 R09: 0000000000000000 [ 682.861957] R10: 00007f6dbe8c7ac0 R11: 0000000000000206 R12: 000055a64693bd88 [ 682.861967] R13: 0000000000000000 R14: 000055a64693bd88 R15: 00007ffe7a831848 This happens because when we enqueue a frame for transmission we do it under xmit_priv lock, then calling rtw_get_stainfo (needed for enqueuing) takes sta_hash_lock and this leads to the following lock dependency: xmit_priv->lock -> sta_hash_lock Turning off a connection will bring to call rtw_free_assoc_resources which will set up the inverse dependency: sta_hash_lock -> xmit_priv_lock This could lead to a deadlock as lockdep complains. Fix it by removing the xmit_priv->lock around rtw_xmitframe_enqueue call inside rtl8723bs_hal_xmit and put it in a smaller critical section inside rtw_xmit_classifier, the only place where xmit_priv data are actually accessed. Replace spin_{lock,unlock}_bh(pxmitpriv->lock) in other tx paths leading to rtw_xmitframe_enqueue call with spin_{lock,unlock}_bh(psta->sleep_q.lock) - it's not clear why accessing a sleep_q was protected by a spinlock on xmitpriv->lock. This way is avoided the same faulty lock nesting order. Extra changes in v2 by Hans de Goede: -Lift the taking of the struct __queue.lock spinlock out of rtw_free_xmitframe_queue() into the callers this allows also protecting a bunch of related state in rtw_free_stainfo(): -Protect psta->sleepq_len on rtw_free_xmitframe_queue(&psta->sleep_q); -Protect struct tx_servq.tx_pending and tx_servq.qcnt when calling rtw_free_xmitframe_queue(&tx_servq.sta_pending) -This also allows moving the spin_lock_bh(&pxmitpriv->lock); to below the sleep_q free-ing code, avoiding another ABBA locking issue CC: Larry Finger <[email protected]> Co-developed-by: Hans de Goede <[email protected]> Tested-on: Lenovo Ideapad MiiX 300-10IBY Signed-off-by: Fabio Aiuto <[email protected]> Signed-off-by: Hans de Goede <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
commit 35b6b28 upstream. When branch target identifiers are in use, code reachable via an indirect branch requires a BTI landing pad at the branch target site. When building FTRACE_WITH_REGS atop patchable-function-entry, we miss BTIs at the start start of the `ftrace_caller` and `ftrace_regs_caller` trampolines, and when these are called from a module via a PLT (which will use a `BR X16`), we will encounter a BTI failure, e.g. | # insmod lkdtm.ko | lkdtm: No crash points registered, enable through debugfs | # echo function_graph > /sys/kernel/debug/tracing/current_tracer | # cat /sys/kernel/debug/provoke-crash/DIRECT | Unhandled 64-bit el1h sync exception on CPU0, ESR 0x34000001 -- BTI | CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3 | Hardware name: linux,dummy-virt (DT) | pstate: 60400405 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=jc) | pc : ftrace_caller+0x0/0x3c | lr : lkdtm_debugfs_open+0xc/0x20 [lkdtm] | sp : ffff800012e43b00 | x29: ffff800012e43b00 x28: 0000000000000000 x27: ffff800012e43c88 | x26: 0000000000000000 x25: 0000000000000000 x24: ffff0000c171f200 | x23: ffff0000c27b1e00 x22: ffff0000c2265240 x21: ffff0000c23c8c30 | x20: ffff8000090ba380 x19: 0000000000000000 x18: 0000000000000000 | x17: 0000000000000000 x16: ffff80001002bb4c x15: 0000000000000000 | x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000900ff0 | x11: ffff0000c4166310 x10: ffff800012e43b00 x9 : ffff8000104f2384 | x8 : 0000000000000001 x7 : 0000000000000000 x6 : 000000000000003f | x5 : 0000000000000040 x4 : ffff800012e43af0 x3 : 0000000000000001 | x2 : ffff8000090b0000 x1 : ffff0000c171f200 x0 : ffff0000c23c8c30 | Kernel panic - not syncing: Unhandled exception | CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3 | Hardware name: linux,dummy-virt (DT) | Call trace: | dump_backtrace+0x0/0x1a4 | show_stack+0x24/0x30 | dump_stack_lvl+0x68/0x84 | dump_stack+0x1c/0x38 | panic+0x168/0x360 | arm64_exit_nmi.isra.0+0x0/0x80 | el1h_64_sync_handler+0x68/0xd4 | el1h_64_sync+0x78/0x7c | ftrace_caller+0x0/0x3c | do_dentry_open+0x134/0x3b0 | vfs_open+0x38/0x44 | path_openat+0x89c/0xe40 | do_filp_open+0x8c/0x13c | do_sys_openat2+0xbc/0x174 | __arm64_sys_openat+0x6c/0xbc | invoke_syscall+0x50/0x120 | el0_svc_common.constprop.0+0xdc/0x100 | do_el0_svc+0x84/0xa0 | el0_svc+0x28/0x80 | el0t_64_sync_handler+0xa8/0x130 | el0t_64_sync+0x1a0/0x1a4 | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x0,00000f42,da660c5f | Memory Limit: none | ---[ end Kernel panic - not syncing: Unhandled exception ]--- Fix this by adding the required `BTI C`, as we only require these to be reachable via BL for direct calls or BR X16/X17 for PLTs. For now, these are open-coded in the function prologue, matching the style of the `__hwasan_tag_mismatch` trampoline. In future we may wish to consider adding a new SYM_CODE_START_*() variant which has an implicit BTI. When ftrace is built atop mcount, the trampolines are marked with SYM_FUNC_START(), and so get an implicit BTI. We may need to change these over to SYM_CODE_START() in future for RELIABLE_STACKTRACE, in case we need to apply special care aroud the return address being rewritten. Fixes: 97fed77 ("arm64: bti: Provide Kconfig for kernel mode BTI") Signed-off-by: Mark Rutland <[email protected]> Cc: Catalin Marinas <[email protected]> Cc: Mark Brown <[email protected]> Cc: Will Deacon <[email protected]> Reviewed-by: Mark Brown <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Will Deacon <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
commit b50db70 upstream. There are cases that the TSC clocksource is wrongly judged as unstable by the clocksource watchdog mechanism which tries to validate the TSC against HPET, PM_TIMER or jiffies. While there is hardly a general reliable way to check the validity of a watchdog, Thomas Gleixner proposed [1]: "I'm inclined to lift that requirement when the CPU has: 1) X86_FEATURE_CONSTANT_TSC 2) X86_FEATURE_NONSTOP_TSC 3) X86_FEATURE_NONSTOP_TSC_S3 4) X86_FEATURE_TSC_ADJUST 5) At max. 4 sockets After two decades of horrors we're finally at a point where TSC seems to be halfway reliable and less abused by BIOS tinkerers. TSC_ADJUST was really key as we can now detect even small modifications reliably and the important point is that we can cure them as well (not pretty but better than all other options)." As feature #3 X86_FEATURE_NONSTOP_TSC_S3 only exists on several generations of Atom processorz, and is always coupled with X86_FEATURE_CONSTANT_TSC and X86_FEATURE_NONSTOP_TSC, skip checking it, and also be more defensive to use maximal 2 sockets. The check is done inside tsc_init() before registering 'tsc-early' and 'tsc' clocksources, as there were cases that both of them had been wrongly judged as unreliable. For more background of tsc/watchdog, there is a good summary in [2] [tglx} Update vs. jiffies: On systems where the only remaining clocksource aside of TSC is jiffies there is no way to make this work because that creates a circular dependency. Jiffies accuracy depends on not missing a periodic timer interrupt, which is not guaranteed. That could be detected by TSC, but as TSC is not trusted this cannot be compensated. The consequence is a circulus vitiosus which results in shutting down TSC and falling back to the jiffies clocksource which is even more unreliable. [1]. https://lore.kernel.org/lkml/[email protected]/ [2]. https://lore.kernel.org/lkml/[email protected]/ [ tglx: Refine comment and amend changelog ] Fixes: 6e3cd95 ("x86/hpet: Use another crystalball to evaluate HPET usability") Suggested-by: Thomas Gleixner <[email protected]> Signed-off-by: Feng Tang <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Cc: "Paul E. McKenney" <[email protected]> Cc: [email protected] Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
commit 2fa7d94 upstream. The first commit cited below attempts to fix the off-by-one error that appeared in some comparisons with an open range. Due to this error, arithmetically equivalent pieces of code could get different verdicts from the verifier, for example (pseudocode): // 1. Passes the verifier: if (data + 8 > data_end) return early read *(u64 *)data, i.e. [data; data+7] // 2. Rejected by the verifier (should still pass): if (data + 7 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The attempted fix, however, shifts the range by one in a wrong direction, so the bug not only remains, but also such piece of code starts failing in the verifier: // 3. Rejected by the verifier, but the check is stricter than in #1. if (data + 8 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The change performed by that fix converted an off-by-one bug into off-by-two. The second commit cited below added the BPF selftests written to ensure than code chunks like #3 are rejected, however, they should be accepted. This commit fixes the off-by-two error by adjusting new_range in the right direction and fixes the tests by changing the range into the one that should actually fail. Fixes: fb2a311 ("bpf: fix off by one for range markings with L{T, E} patterns") Fixes: b37242c ("bpf: add test cases to bpf selftests to cover all access tests") Signed-off-by: Maxim Mikityanskiy <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
commit f35838a upstream. Line 1169 (#3) allocates a memory chunk for victim_name by kmalloc(), but when the function returns in line 1184 (#4) victim_name allocated by line 1169 (#3) is not freed, which will lead to a memory leak. There is a similar snippet of code in this function as allocating a memory chunk for victim_name in line 1104 (#1) as well as releasing the memory in line 1116 (#2). We should kfree() victim_name when the return value of backref_in_log() is less than zero and before the function returns in line 1184 (#4). 1057 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1058 struct btrfs_root *root, 1059 struct btrfs_path *path, 1060 struct btrfs_root *log_root, 1061 struct btrfs_inode *dir, 1062 struct btrfs_inode *inode, 1063 u64 inode_objectid, u64 parent_objectid, 1064 u64 ref_index, char *name, int namelen, 1065 int *search_done) 1066 { 1104 victim_name = kmalloc(victim_name_len, GFP_NOFS); // #1: kmalloc (victim_name-1) 1105 if (!victim_name) 1106 return -ENOMEM; 1112 ret = backref_in_log(log_root, &search_key, 1113 parent_objectid, victim_name, 1114 victim_name_len); 1115 if (ret < 0) { 1116 kfree(victim_name); // #2: kfree (victim_name-1) 1117 return ret; 1118 } else if (!ret) { 1169 victim_name = kmalloc(victim_name_len, GFP_NOFS); // #3: kmalloc (victim_name-2) 1170 if (!victim_name) 1171 return -ENOMEM; 1180 ret = backref_in_log(log_root, &search_key, 1181 parent_objectid, victim_name, 1182 victim_name_len); 1183 if (ret < 0) { 1184 return ret; // #4: missing kfree (victim_name-2) 1185 } else if (!ret) { 1241 return 0; 1242 } Fixes: d3316c8 ("btrfs: Properly handle backref_in_log retval") CC: [email protected] # 5.10+ Reviewed-by: Qu Wenruo <[email protected]> Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Jianglei Nie <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
l1k
pushed a commit
that referenced
this pull request
Feb 15, 2023
Jakub Sitnicki says: ==================== This patch set addresses the syzbot report in [1]. Patch #1 has been suggested by Eric [2]. I extended it to cover the rest of sock_map proto callbacks. Otherwise we would still overflow the stack. Patch #2 contains the actual fix and bug analysis. Patches #3 & #4 add coverage to selftests to trigger the bug. [1] https://lore.kernel.org/all/[email protected]/ [2] https://lore.kernel.org/all/CANn89iK2UN1FmdUcH12fv_xiZkv2G+Nskvmq7fG6aA_6VKRf6g@mail.gmail.com/ --- v1 -> v2: v1: https://lore.kernel.org/r/[email protected] [v1 didn't hit bpf@ ML by mistake] * pull in Eric's patch to protect against recursion loop bugs (Eric) * add a macro helper to check if pointer is inside a memory range (Eric) ==================== Signed-off-by: Alexei Starovoitov <[email protected]>
l1k
pushed a commit
that referenced
this pull request
Feb 15, 2023
…kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 6.2, take #3 - Yet another fix for non-CPU accesses to the memory backing the VGICv3 subsystem - A set of fixes for the setlftest checking for the S1PTW behaviour after the fix that went in ealier in the cycle
linosanfilippo-kunbus
pushed a commit
that referenced
this pull request
Aug 21, 2023
[ Upstream commit 99d4850 ] Found by leak sanitizer: ``` ==1632594==ERROR: LeakSanitizer: detected memory leaks Direct leak of 21 byte(s) in 1 object(s) allocated from: #0 0x7f2953a7077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439 #1 0x556701d6fbbf in perf_env__read_cpuid util/env.c:369 #2 0x556701d70589 in perf_env__cpuid util/env.c:465 #3 0x55670204bba2 in x86__is_amd_cpu arch/x86/util/env.c:14 #4 0x5567020487a2 in arch__post_evsel_config arch/x86/util/evsel.c:83 #5 0x556701d8f78b in evsel__config util/evsel.c:1366 #6 0x556701ef5872 in evlist__config util/record.c:108 #7 0x556701cd6bcd in test__PERF_RECORD tests/perf-record.c:112 #8 0x556701cacd07 in run_test tests/builtin-test.c:236 #9 0x556701cacfac in test_and_print tests/builtin-test.c:265 #10 0x556701cadddb in __cmd_test tests/builtin-test.c:402 #11 0x556701caf2aa in cmd_test tests/builtin-test.c:559 #12 0x556701d3b557 in run_builtin tools/perf/perf.c:323 #13 0x556701d3bac8 in handle_internal_command tools/perf/perf.c:377 #14 0x556701d3be90 in run_argv tools/perf/perf.c:421 #15 0x556701d3c3f8 in main tools/perf/perf.c:537 #16 0x7f2952a46189 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 SUMMARY: AddressSanitizer: 21 byte(s) leaked in 1 allocation(s). ``` Fixes: f7b58cb ("perf mem/c2c: Add load store event mappings for AMD") Signed-off-by: Ian Rogers <[email protected]> Acked-by: Ravi Bangoria <[email protected]> Tested-by: Arnaldo Carvalho de Melo <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Ravi Bangoria <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
linosanfilippo-kunbus
pushed a commit
that referenced
this pull request
Aug 21, 2023
[ Upstream commit b684c09 ] ppc_save_regs() skips one stack frame while saving the CPU register states. Instead of saving current R1, it pulls the previous stack frame pointer. When vmcores caused by direct panic call (such as `echo c > /proc/sysrq-trigger`), are debugged with gdb, gdb fails to show the backtrace correctly. On further analysis, it was found that it was because of mismatch between r1 and NIP. GDB uses NIP to get current function symbol and uses corresponding debug info of that function to unwind previous frames, but due to the mismatching r1 and NIP, the unwinding does not work, and it fails to unwind to the 2nd frame and hence does not show the backtrace. GDB backtrace with vmcore of kernel without this patch: --------- (gdb) bt #0 0xc0000000002a53e8 in crash_setup_regs (oldregs=<optimized out>, newregs=0xc000000004f8f8d8) at ./arch/powerpc/include/asm/kexec.h:69 #1 __crash_kexec (regs=<optimized out>) at kernel/kexec_core.c:974 #2 0x0000000000000063 in ?? () #3 0xc000000003579320 in ?? () --------- Further analysis revealed that the mismatch occurred because "ppc_save_regs" was saving the previous stack's SP instead of the current r1. This patch fixes this by storing current r1 in the saved pt_regs. GDB backtrace with vmcore of patched kernel: -------- (gdb) bt #0 0xc0000000002a53e8 in crash_setup_regs (oldregs=0x0, newregs=0xc00000000670b8d8) at ./arch/powerpc/include/asm/kexec.h:69 #1 __crash_kexec (regs=regs@entry=0x0) at kernel/kexec_core.c:974 #2 0xc000000000168918 in panic (fmt=fmt@entry=0xc000000001654a60 "sysrq triggered crash\n") at kernel/panic.c:358 #3 0xc000000000b735f8 in sysrq_handle_crash (key=<optimized out>) at drivers/tty/sysrq.c:155 #4 0xc000000000b742cc in __handle_sysrq (key=key@entry=99, check_mask=check_mask@entry=false) at drivers/tty/sysrq.c:602 #5 0xc000000000b7506c in write_sysrq_trigger (file=<optimized out>, buf=<optimized out>, count=2, ppos=<optimized out>) at drivers/tty/sysrq.c:1163 #6 0xc00000000069a7bc in pde_write (ppos=<optimized out>, count=<optimized out>, buf=<optimized out>, file=<optimized out>, pde=0xc00000000362cb40) at fs/proc/inode.c:340 #7 proc_reg_write (file=<optimized out>, buf=<optimized out>, count=<optimized out>, ppos=<optimized out>) at fs/proc/inode.c:352 #8 0xc0000000005b3bbc in vfs_write (file=file@entry=0xc000000006aa6b00, buf=buf@entry=0x61f498b4f60 <error: Cannot access memory at address 0x61f498b4f60>, count=count@entry=2, pos=pos@entry=0xc00000000670bda0) at fs/read_write.c:582 #9 0xc0000000005b4264 in ksys_write (fd=<optimized out>, buf=0x61f498b4f60 <error: Cannot access memory at address 0x61f498b4f60>, count=2) at fs/read_write.c:637 #10 0xc00000000002ea2c in system_call_exception (regs=0xc00000000670be80, r0=<optimized out>) at arch/powerpc/kernel/syscall.c:171 #11 0xc00000000000c270 in system_call_vectored_common () at arch/powerpc/kernel/interrupt_64.S:192 -------- Nick adds: So this now saves regs as though it was an interrupt taken in the caller, at the instruction after the call to ppc_save_regs, whereas previously the NIP was there, but R1 came from the caller's caller and that mismatch is what causes gdb's dwarf unwinder to go haywire. Signed-off-by: Aditya Gupta <[email protected]> Fixes: d16a58f ("powerpc: Improve ppc_save_regs()") Reivewed-by: Nicholas Piggin <[email protected]> Signed-off-by: Michael Ellerman <[email protected]> Link: https://msgid.link/[email protected] Signed-off-by: Sasha Levin <[email protected]>
linosanfilippo-kunbus
pushed a commit
that referenced
this pull request
Aug 21, 2023
[ Upstream commit e739718 ] syzkaller found zero division error [0] in div_s64_rem() called from get_cycle_time_elapsed(), where sched->cycle_time is the divisor. We have tests in parse_taprio_schedule() so that cycle_time will never be 0, and actually cycle_time is not 0 in get_cycle_time_elapsed(). The problem is that the types of divisor are different; cycle_time is s64, but the argument of div_s64_rem() is s32. syzkaller fed this input and 0x100000000 is cast to s32 to be 0. @TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME={0xc, 0x8, 0x100000000} We use s64 for cycle_time to cast it to ktime_t, so let's keep it and set max for cycle_time. While at it, we prevent overflow in setup_txtime() and add another test in parse_taprio_schedule() to check if cycle_time overflows. Also, we add a new tdc test case for this issue. [0]: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 103 Comm: kworker/1:3 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:div_s64_rem include/linux/math64.h:42 [inline] RIP: 0010:get_cycle_time_elapsed net/sched/sch_taprio.c:223 [inline] RIP: 0010:find_entry_to_transmit+0x252/0x7e0 net/sched/sch_taprio.c:344 Code: 3c 02 00 0f 85 5e 05 00 00 48 8b 4c 24 08 4d 8b bd 40 01 00 00 48 8b 7c 24 48 48 89 c8 4c 29 f8 48 63 f7 48 99 48 89 74 24 70 <48> f7 fe 48 29 d1 48 8d 04 0f 49 89 cc 48 89 44 24 20 49 8d 85 10 RSP: 0018:ffffc90000acf260 EFLAGS: 00010206 RAX: 177450e0347560cf RBX: 0000000000000000 RCX: 177450e0347560cf RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000100000000 RBP: 0000000000000056 R08: 0000000000000000 R09: ffffed10020a0934 R10: ffff8880105049a7 R11: ffff88806cf3a520 R12: ffff888010504800 R13: ffff88800c00d800 R14: ffff8880105049a0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88806cf00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0edf84f0e8 CR3: 000000000d73c002 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> get_packet_txtime net/sched/sch_taprio.c:508 [inline] taprio_enqueue_one+0x900/0xff0 net/sched/sch_taprio.c:577 taprio_enqueue+0x378/0xae0 net/sched/sch_taprio.c:658 dev_qdisc_enqueue+0x46/0x170 net/core/dev.c:3732 __dev_xmit_skb net/core/dev.c:3821 [inline] __dev_queue_xmit+0x1b2f/0x3000 net/core/dev.c:4169 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_resolve_output net/core/neighbour.c:1552 [inline] neigh_resolve_output+0x4a7/0x780 net/core/neighbour.c:1532 neigh_output include/net/neighbour.h:544 [inline] ip6_finish_output2+0x924/0x17d0 net/ipv6/ip6_output.c:135 __ip6_finish_output+0x620/0xaa0 net/ipv6/ip6_output.c:196 ip6_finish_output net/ipv6/ip6_output.c:207 [inline] NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip6_output+0x206/0x410 net/ipv6/ip6_output.c:228 dst_output include/net/dst.h:458 [inline] NF_HOOK.constprop.0+0xea/0x260 include/linux/netfilter.h:303 ndisc_send_skb+0x872/0xe80 net/ipv6/ndisc.c:508 ndisc_send_ns+0xb5/0x130 net/ipv6/ndisc.c:666 addrconf_dad_work+0xc14/0x13f0 net/ipv6/addrconf.c:4175 process_one_work+0x92c/0x13a0 kernel/workqueue.c:2597 worker_thread+0x60f/0x1240 kernel/workqueue.c:2748 kthread+0x2fe/0x3f0 kernel/kthread.c:389 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: Fixes: 4cfd577 ("taprio: Add support for txtime-assist mode") Reported-by: syzkaller <[email protected]> Signed-off-by: Kuniyuki Iwashima <[email protected]> Co-developed-by: Eric Dumazet <[email protected]> Co-developed-by: Pedro Tammela <[email protected]> Acked-by: Vinicius Costa Gomes <[email protected]> Signed-off-by: David S. Miller <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Apr 15, 2025
commit f02c41f upstream. Use raw_spinlock in order to fix spurious messages about invalid context when spinlock debugging is enabled. The lock is only used to serialize register access. [ 4.239592] ============================= [ 4.239595] [ BUG: Invalid wait context ] [ 4.239599] 6.13.0-rc7-arm64-renesas-05496-gd088502a519f #35 Not tainted [ 4.239603] ----------------------------- [ 4.239606] kworker/u8:5/76 is trying to lock: [ 4.239609] ffff0000091898a0 (&p->lock){....}-{3:3}, at: gpio_rcar_config_interrupt_input_mode+0x34/0x164 [ 4.239641] other info that might help us debug this: [ 4.239643] context-{5:5} [ 4.239646] 5 locks held by kworker/u8:5/76: [ 4.239651] #0: ffff0000080fb148 ((wq_completion)async){+.+.}-{0:0}, at: process_one_work+0x190/0x62c [ 4.250180] OF: /soc/sound@ec500000/ports/port@0/endpoint: Read of boolean property 'frame-master' with a value. [ 4.254094] #1: ffff80008299bd80 ((work_completion)(&entry->work)){+.+.}-{0:0}, at: process_one_work+0x1b8/0x62c [ 4.254109] #2: ffff00000920c8f8 [ 4.258345] OF: /soc/sound@ec500000/ports/port@1/endpoint: Read of boolean property 'bitclock-master' with a value. [ 4.264803] (&dev->mutex){....}-{4:4}, at: __device_attach_async_helper+0x3c/0xdc [ 4.264820] #3: ffff00000a50ca40 (request_class#2){+.+.}-{4:4}, at: __setup_irq+0xa0/0x690 [ 4.264840] #4: [ 4.268872] OF: /soc/sound@ec500000/ports/port@1/endpoint: Read of boolean property 'frame-master' with a value. [ 4.273275] ffff00000a50c8c8 (lock_class){....}-{2:2}, at: __setup_irq+0xc4/0x690 [ 4.296130] renesas_sdhi_internal_dmac ee10000.mmc: mmc1 base at 0x00000000ee100000, max clock rate 200 MHz [ 4.304082] stack backtrace: [ 4.304086] CPU: 1 UID: 0 PID: 76 Comm: kworker/u8:5 Not tainted 6.13.0-rc7-arm64-renesas-05496-gd088502a519f #35 [ 4.304092] Hardware name: Renesas Salvator-X 2nd version board based on r8a77965 (DT) [ 4.304097] Workqueue: async async_run_entry_fn [ 4.304106] Call trace: [ 4.304110] show_stack+0x14/0x20 (C) [ 4.304122] dump_stack_lvl+0x6c/0x90 [ 4.304131] dump_stack+0x14/0x1c [ 4.304138] __lock_acquire+0xdfc/0x1584 [ 4.426274] lock_acquire+0x1c4/0x33c [ 4.429942] _raw_spin_lock_irqsave+0x5c/0x80 [ 4.434307] gpio_rcar_config_interrupt_input_mode+0x34/0x164 [ 4.440061] gpio_rcar_irq_set_type+0xd4/0xd8 [ 4.444422] __irq_set_trigger+0x5c/0x178 [ 4.448435] __setup_irq+0x2e4/0x690 [ 4.452012] request_threaded_irq+0xc4/0x190 [ 4.456285] devm_request_threaded_irq+0x7c/0xf4 [ 4.459398] ata1: link resume succeeded after 1 retries [ 4.460902] mmc_gpiod_request_cd_irq+0x68/0xe0 [ 4.470660] mmc_start_host+0x50/0xac [ 4.474327] mmc_add_host+0x80/0xe4 [ 4.477817] tmio_mmc_host_probe+0x2b0/0x440 [ 4.482094] renesas_sdhi_probe+0x488/0x6f4 [ 4.486281] renesas_sdhi_internal_dmac_probe+0x60/0x78 [ 4.491509] platform_probe+0x64/0xd8 [ 4.495178] really_probe+0xb8/0x2a8 [ 4.498756] __driver_probe_device+0x74/0x118 [ 4.503116] driver_probe_device+0x3c/0x154 [ 4.507303] __device_attach_driver+0xd4/0x160 [ 4.511750] bus_for_each_drv+0x84/0xe0 [ 4.515588] __device_attach_async_helper+0xb0/0xdc [ 4.520470] async_run_entry_fn+0x30/0xd8 [ 4.524481] process_one_work+0x210/0x62c [ 4.528494] worker_thread+0x1ac/0x340 [ 4.532245] kthread+0x10c/0x110 [ 4.535476] ret_from_fork+0x10/0x20 Signed-off-by: Niklas Söderlund <[email protected]> Reviewed-by: Geert Uytterhoeven <[email protected]> Tested-by: Geert Uytterhoeven <[email protected]> Cc: [email protected] Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Bartosz Golaszewski <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Apr 15, 2025
commit f364cde upstream. LTP reported a NULL pointer dereference as followed: CPU: 7 UID: 0 PID: 5995 Comm: cat Kdump: loaded Not tainted 6.12.0-rc6+ #3 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __pi_strcmp+0x24/0x140 lr : zcomp_available_show+0x60/0x100 [zram] sp : ffff800088b93b90 x29: ffff800088b93b90 x28: 0000000000000001 x27: 0000000000400cc0 x26: 0000000000000ffe x25: ffff80007b3e2388 x24: 0000000000000000 x23: ffff80007b3e2390 x22: ffff0004041a9000 x21: ffff80007b3e2900 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: ffff80007b3e2900 x9 : ffff80007b3cb280 x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000040 x4 : 0000000000000000 x3 : 00656c722d6f7a6c x2 : 0000000000000000 x1 : ffff80007b3e2900 x0 : 0000000000000000 Call trace: __pi_strcmp+0x24/0x140 comp_algorithm_show+0x40/0x70 [zram] dev_attr_show+0x28/0x80 sysfs_kf_seq_show+0x90/0x140 kernfs_seq_show+0x34/0x48 seq_read_iter+0x1d4/0x4e8 kernfs_fop_read_iter+0x40/0x58 new_sync_read+0x9c/0x168 vfs_read+0x1a8/0x1f8 ksys_read+0x74/0x108 __arm64_sys_read+0x24/0x38 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x38/0x138 el0t_64_sync_handler+0xc0/0xc8 el0t_64_sync+0x188/0x190 The zram->comp_algs[ZRAM_PRIMARY_COMP] can be NULL in zram_add() if comp_algorithm_set() has not been called. User can access the zram device by sysfs after device_add_disk(), so there is a time window to trigger the NULL pointer dereference. Move it ahead device_add_disk() to make sure when user can access the zram device, it is ready. comp_algorithm_set() is protected by zram->init_lock in other places and no such problem. Link: https://lkml.kernel.org/r/[email protected] Fixes: 7ac07a2 ("zram: preparation for multi-zcomp support") Signed-off-by: Liu Shixin <[email protected]> Reviewed-by: Sergey Senozhatsky <[email protected]> Cc: Jens Axboe <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> [This fix does not backport zram_comp_params_reset which was introduced after v6.6, in commit f2bac7a ("zram: introduce zcomp_params structure")] Signed-off-by: Jianqi Ren <[email protected]> Signed-off-by: He Zhe <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Jun 6, 2025
[ Upstream commit 5da692e ] A cache device failing to resume due to mapping errors should not be retried, as the failure leaves a partially initialized policy object. Repeating the resume operation risks triggering BUG_ON when reloading cache mappings into the incomplete policy object. Reproduce steps: 1. create a cache metadata consisting of 512 or more cache blocks, with some mappings stored in the first array block of the mapping array. Here we use cache_restore v1.0 to build the metadata. cat <<EOF >> cmeta.xml <superblock uuid="" block_size="128" nr_cache_blocks="512" \ policy="smq" hint_width="4"> <mappings> <mapping cache_block="0" origin_block="0" dirty="false"/> </mappings> </superblock> EOF dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" cache_restore -i cmeta.xml -o /dev/mapper/cmeta --metadata-version=2 dmsetup remove cmeta 2. wipe the second array block of the mapping array to simulate data degradations. mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \ 2>/dev/null | hexdump -e '1/8 "%u\n"') ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \ 2>/dev/null | hexdump -e '1/8 "%u\n"') dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock 3. try bringing up the cache device. The resume is expected to fail due to the broken array block. dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dmsetup create cache --notable dmsetup load cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" dmsetup resume cache 4. try resuming the cache again. An unexpected BUG_ON is triggered while loading cache mappings. dmsetup resume cache Kernel logs: (snip) ------------[ cut here ]------------ kernel BUG at drivers/md/dm-cache-policy-smq.c:752! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 UID: 0 PID: 332 Comm: dmsetup Not tainted 6.13.4 #3 RIP: 0010:smq_load_mapping+0x3e5/0x570 Fix by disallowing resume operations for devices that failed the initial attempt. Signed-off-by: Ming-Hung Tsai <[email protected]> Signed-off-by: Mikulas Patocka <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Jun 6, 2025
[ Upstream commit 88f7f56 ] When a bio with REQ_PREFLUSH is submitted to dm, __send_empty_flush() generates a flush_bio with REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, which causes the flush_bio to be throttled by wbt_wait(). An example from v5.4, similar problem also exists in upstream: crash> bt 2091206 PID: 2091206 TASK: ffff2050df92a300 CPU: 109 COMMAND: "kworker/u260:0" #0 [ffff800084a2f7f0] __switch_to at ffff80004008aeb8 #1 [ffff800084a2f820] __schedule at ffff800040bfa0c4 #2 [ffff800084a2f880] schedule at ffff800040bfa4b4 #3 [ffff800084a2f8a0] io_schedule at ffff800040bfa9c4 #4 [ffff800084a2f8c0] rq_qos_wait at ffff8000405925bc #5 [ffff800084a2f940] wbt_wait at ffff8000405bb3a0 #6 [ffff800084a2f9a0] __rq_qos_throttle at ffff800040592254 #7 [ffff800084a2f9c0] blk_mq_make_request at ffff80004057cf38 #8 [ffff800084a2fa60] generic_make_request at ffff800040570138 #9 [ffff800084a2fae0] submit_bio at ffff8000405703b4 #10 [ffff800084a2fb50] xlog_write_iclog at ffff800001280834 [xfs] #11 [ffff800084a2fbb0] xlog_sync at ffff800001280c3c [xfs] #12 [ffff800084a2fbf0] xlog_state_release_iclog at ffff800001280df4 [xfs] #13 [ffff800084a2fc10] xlog_write at ffff80000128203c [xfs] #14 [ffff800084a2fcd0] xlog_cil_push at ffff8000012846dc [xfs] #15 [ffff800084a2fda0] xlog_cil_push_work at ffff800001284a2c [xfs] #16 [ffff800084a2fdb0] process_one_work at ffff800040111d08 #17 [ffff800084a2fe00] worker_thread at ffff8000401121cc #18 [ffff800084a2fe70] kthread at ffff800040118de4 After commit 2def284 ("xfs: don't allow log IO to be throttled"), the metadata submitted by xlog_write_iclog() should not be throttled. But due to the existence of the dm layer, throttling flush_bio indirectly causes the metadata bio to be throttled. Fix this by conditionally adding REQ_IDLE to flush_bio.bi_opf, which makes wbt_should_throttle() return false to avoid wbt_wait(). Signed-off-by: Jinliang Zheng <[email protected]> Reviewed-by: Tianxiang Peng <[email protected]> Reviewed-by: Hao Peng <[email protected]> Signed-off-by: Mikulas Patocka <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There are some fixes on the 4.19 stable branches which might be important. Ignore fixes which only affected USB-based devices.