forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 12
Feature/REVPI-721 gpio key/REVPI-733 leds #6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
iluminat23
merged 2 commits into
RevolutionPi:revpi-4.19
from
iluminat23:feature/REVPI-721_gpio-key
Aug 19, 2020
Merged
Feature/REVPI-721 gpio key/REVPI-733 leds #6
iluminat23
merged 2 commits into
RevolutionPi:revpi-4.19
from
iluminat23:feature/REVPI-721_gpio-key
Aug 19, 2020
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The linux,default-trigger should be set to a desired trigger, which might be heartbeat or timer for example. The name of the led is no valide trigger. Setting the property to "none" and keep it for documentation purpose. Signed-off-by: Philipp Rosenberger <[email protected]>
linosanfilippo-kunbus
suggested changes
Aug 18, 2020
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please also take polarity of gpio into account
There is a button on the top of some variantes of the KUNBUS Flat. This button is free to use by the user. Configure this button as gpio-key with the keycode KEY_UNKNOWN (240). Signed-off-by: Philipp Rosenberger <[email protected]>
linosanfilippo-kunbus
approved these changes
Aug 19, 2020
iluminat23
pushed a commit
that referenced
this pull request
Jan 20, 2022
commit c1e6311 upstream. To clear a user buffer we cannot simply use memset, we have to use clear_user(). With a virtio-mem device that registers a vmcore_cb and has some logically unplugged memory inside an added Linux memory block, I can easily trigger a BUG by copying the vmcore via "cp": systemd[1]: Starting Kdump Vmcore Save Service... kdump[420]: Kdump is using the default log level(3). kdump[453]: saving to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/ kdump[458]: saving vmcore-dmesg.txt to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/ kdump[465]: saving vmcore-dmesg.txt complete kdump[467]: saving vmcore BUG: unable to handle page fault for address: 00007f2374e01000 #PF: supervisor write access in kernel mode #PF: error_code(0x0003) - permissions violation PGD 7a523067 P4D 7a523067 PUD 7a528067 PMD 7a525067 PTE 800000007048f867 Oops: 0003 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 468 Comm: cp Not tainted 5.15.0+ #6 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-27-g64f37cc530f1-prebuilt.qemu.org 04/01/2014 RIP: 0010:read_from_oldmem.part.0.cold+0x1d/0x86 Code: ff ff ff e8 05 ff fe ff e9 b9 e9 7f ff 48 89 de 48 c7 c7 38 3b 60 82 e8 f1 fe fe ff 83 fd 08 72 3c 49 8d 7d 08 4c 89 e9 89 e8 <49> c7 45 00 00 00 00 00 49 c7 44 05 f8 00 00 00 00 48 83 e7 f81 RSP: 0018:ffffc9000073be08 EFLAGS: 00010212 RAX: 0000000000001000 RBX: 00000000002fd000 RCX: 00007f2374e01000 RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00007f2374e01008 RBP: 0000000000001000 R08: 0000000000000000 R09: ffffc9000073bc50 R10: ffffc9000073bc48 R11: ffffffff829461a8 R12: 000000000000f000 R13: 00007f2374e01000 R14: 0000000000000000 R15: ffff88807bd421e8 FS: 00007f2374e12140(0000) GS:ffff88807f000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2374e01000 CR3: 000000007a4aa000 CR4: 0000000000350eb0 Call Trace: read_vmcore+0x236/0x2c0 proc_reg_read+0x55/0xa0 vfs_read+0x95/0x190 ksys_read+0x4f/0xc0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Some x86-64 CPUs have a CPU feature called "Supervisor Mode Access Prevention (SMAP)", which is used to detect wrong access from the kernel to user buffers like this: SMAP triggers a permissions violation on wrong access. In the x86-64 variant of clear_user(), SMAP is properly handled via clac()+stac(). To fix, properly use clear_user() when we're dealing with a user buffer. Link: https://lkml.kernel.org/r/[email protected] Fixes: 997c136 ("fs/proc/vmcore.c: add hook to read_from_oldmem() to check for non-ram pages") Signed-off-by: David Hildenbrand <[email protected]> Acked-by: Baoquan He <[email protected]> Cc: Dave Young <[email protected]> Cc: Baoquan He <[email protected]> Cc: Vivek Goyal <[email protected]> Cc: Philipp Rudo <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
linosanfilippo-kunbus
pushed a commit
that referenced
this pull request
Aug 21, 2023
[ Upstream commit 99d4850 ] Found by leak sanitizer: ``` ==1632594==ERROR: LeakSanitizer: detected memory leaks Direct leak of 21 byte(s) in 1 object(s) allocated from: #0 0x7f2953a7077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439 #1 0x556701d6fbbf in perf_env__read_cpuid util/env.c:369 #2 0x556701d70589 in perf_env__cpuid util/env.c:465 #3 0x55670204bba2 in x86__is_amd_cpu arch/x86/util/env.c:14 #4 0x5567020487a2 in arch__post_evsel_config arch/x86/util/evsel.c:83 #5 0x556701d8f78b in evsel__config util/evsel.c:1366 #6 0x556701ef5872 in evlist__config util/record.c:108 #7 0x556701cd6bcd in test__PERF_RECORD tests/perf-record.c:112 #8 0x556701cacd07 in run_test tests/builtin-test.c:236 #9 0x556701cacfac in test_and_print tests/builtin-test.c:265 #10 0x556701cadddb in __cmd_test tests/builtin-test.c:402 #11 0x556701caf2aa in cmd_test tests/builtin-test.c:559 #12 0x556701d3b557 in run_builtin tools/perf/perf.c:323 #13 0x556701d3bac8 in handle_internal_command tools/perf/perf.c:377 #14 0x556701d3be90 in run_argv tools/perf/perf.c:421 #15 0x556701d3c3f8 in main tools/perf/perf.c:537 #16 0x7f2952a46189 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58 SUMMARY: AddressSanitizer: 21 byte(s) leaked in 1 allocation(s). ``` Fixes: f7b58cb ("perf mem/c2c: Add load store event mappings for AMD") Signed-off-by: Ian Rogers <[email protected]> Acked-by: Ravi Bangoria <[email protected]> Tested-by: Arnaldo Carvalho de Melo <[email protected]> Cc: Adrian Hunter <[email protected]> Cc: Alexander Shishkin <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Mark Rutland <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Ravi Bangoria <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
linosanfilippo-kunbus
pushed a commit
that referenced
this pull request
Aug 21, 2023
[ Upstream commit b684c09 ] ppc_save_regs() skips one stack frame while saving the CPU register states. Instead of saving current R1, it pulls the previous stack frame pointer. When vmcores caused by direct panic call (such as `echo c > /proc/sysrq-trigger`), are debugged with gdb, gdb fails to show the backtrace correctly. On further analysis, it was found that it was because of mismatch between r1 and NIP. GDB uses NIP to get current function symbol and uses corresponding debug info of that function to unwind previous frames, but due to the mismatching r1 and NIP, the unwinding does not work, and it fails to unwind to the 2nd frame and hence does not show the backtrace. GDB backtrace with vmcore of kernel without this patch: --------- (gdb) bt #0 0xc0000000002a53e8 in crash_setup_regs (oldregs=<optimized out>, newregs=0xc000000004f8f8d8) at ./arch/powerpc/include/asm/kexec.h:69 #1 __crash_kexec (regs=<optimized out>) at kernel/kexec_core.c:974 #2 0x0000000000000063 in ?? () #3 0xc000000003579320 in ?? () --------- Further analysis revealed that the mismatch occurred because "ppc_save_regs" was saving the previous stack's SP instead of the current r1. This patch fixes this by storing current r1 in the saved pt_regs. GDB backtrace with vmcore of patched kernel: -------- (gdb) bt #0 0xc0000000002a53e8 in crash_setup_regs (oldregs=0x0, newregs=0xc00000000670b8d8) at ./arch/powerpc/include/asm/kexec.h:69 #1 __crash_kexec (regs=regs@entry=0x0) at kernel/kexec_core.c:974 #2 0xc000000000168918 in panic (fmt=fmt@entry=0xc000000001654a60 "sysrq triggered crash\n") at kernel/panic.c:358 #3 0xc000000000b735f8 in sysrq_handle_crash (key=<optimized out>) at drivers/tty/sysrq.c:155 #4 0xc000000000b742cc in __handle_sysrq (key=key@entry=99, check_mask=check_mask@entry=false) at drivers/tty/sysrq.c:602 #5 0xc000000000b7506c in write_sysrq_trigger (file=<optimized out>, buf=<optimized out>, count=2, ppos=<optimized out>) at drivers/tty/sysrq.c:1163 #6 0xc00000000069a7bc in pde_write (ppos=<optimized out>, count=<optimized out>, buf=<optimized out>, file=<optimized out>, pde=0xc00000000362cb40) at fs/proc/inode.c:340 #7 proc_reg_write (file=<optimized out>, buf=<optimized out>, count=<optimized out>, ppos=<optimized out>) at fs/proc/inode.c:352 #8 0xc0000000005b3bbc in vfs_write (file=file@entry=0xc000000006aa6b00, buf=buf@entry=0x61f498b4f60 <error: Cannot access memory at address 0x61f498b4f60>, count=count@entry=2, pos=pos@entry=0xc00000000670bda0) at fs/read_write.c:582 #9 0xc0000000005b4264 in ksys_write (fd=<optimized out>, buf=0x61f498b4f60 <error: Cannot access memory at address 0x61f498b4f60>, count=2) at fs/read_write.c:637 #10 0xc00000000002ea2c in system_call_exception (regs=0xc00000000670be80, r0=<optimized out>) at arch/powerpc/kernel/syscall.c:171 #11 0xc00000000000c270 in system_call_vectored_common () at arch/powerpc/kernel/interrupt_64.S:192 -------- Nick adds: So this now saves regs as though it was an interrupt taken in the caller, at the instruction after the call to ppc_save_regs, whereas previously the NIP was there, but R1 came from the caller's caller and that mismatch is what causes gdb's dwarf unwinder to go haywire. Signed-off-by: Aditya Gupta <[email protected]> Fixes: d16a58f ("powerpc: Improve ppc_save_regs()") Reivewed-by: Nicholas Piggin <[email protected]> Signed-off-by: Michael Ellerman <[email protected]> Link: https://msgid.link/[email protected] Signed-off-by: Sasha Levin <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Apr 15, 2025
commit cb7e509 upstream. If ufshcd_rtc_work calls ufshcd_rpm_put_sync() and the pm's usage_count is 0, we will enter the runtime suspend callback. However, the runtime suspend callback will wait to flush ufshcd_rtc_work, causing a deadlock. Replace ufshcd_rpm_put_sync() with ufshcd_rpm_put() to avoid the deadlock. Fixes: 6bf999e ("scsi: ufs: core: Add UFS RTC support") Cc: [email protected] #6.11.x Signed-off-by: Peter Wang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Reviewed-by: Bart Van Assche <[email protected]> Signed-off-by: Martin K. Petersen <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Jun 6, 2025
[ Upstream commit 88f7f56 ] When a bio with REQ_PREFLUSH is submitted to dm, __send_empty_flush() generates a flush_bio with REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, which causes the flush_bio to be throttled by wbt_wait(). An example from v5.4, similar problem also exists in upstream: crash> bt 2091206 PID: 2091206 TASK: ffff2050df92a300 CPU: 109 COMMAND: "kworker/u260:0" #0 [ffff800084a2f7f0] __switch_to at ffff80004008aeb8 #1 [ffff800084a2f820] __schedule at ffff800040bfa0c4 #2 [ffff800084a2f880] schedule at ffff800040bfa4b4 #3 [ffff800084a2f8a0] io_schedule at ffff800040bfa9c4 #4 [ffff800084a2f8c0] rq_qos_wait at ffff8000405925bc #5 [ffff800084a2f940] wbt_wait at ffff8000405bb3a0 #6 [ffff800084a2f9a0] __rq_qos_throttle at ffff800040592254 #7 [ffff800084a2f9c0] blk_mq_make_request at ffff80004057cf38 #8 [ffff800084a2fa60] generic_make_request at ffff800040570138 #9 [ffff800084a2fae0] submit_bio at ffff8000405703b4 #10 [ffff800084a2fb50] xlog_write_iclog at ffff800001280834 [xfs] #11 [ffff800084a2fbb0] xlog_sync at ffff800001280c3c [xfs] #12 [ffff800084a2fbf0] xlog_state_release_iclog at ffff800001280df4 [xfs] #13 [ffff800084a2fc10] xlog_write at ffff80000128203c [xfs] #14 [ffff800084a2fcd0] xlog_cil_push at ffff8000012846dc [xfs] #15 [ffff800084a2fda0] xlog_cil_push_work at ffff800001284a2c [xfs] #16 [ffff800084a2fdb0] process_one_work at ffff800040111d08 #17 [ffff800084a2fe00] worker_thread at ffff8000401121cc #18 [ffff800084a2fe70] kthread at ffff800040118de4 After commit 2def284 ("xfs: don't allow log IO to be throttled"), the metadata submitted by xlog_write_iclog() should not be throttled. But due to the existence of the dm layer, throttling flush_bio indirectly causes the metadata bio to be throttled. Fix this by conditionally adding REQ_IDLE to flush_bio.bi_opf, which makes wbt_should_throttle() return false to avoid wbt_wait(). Signed-off-by: Jinliang Zheng <[email protected]> Reviewed-by: Tianxiang Peng <[email protected]> Reviewed-by: Hao Peng <[email protected]> Signed-off-by: Mikulas Patocka <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
kunbus-gitlab-sync
pushed a commit
that referenced
this pull request
Jun 23, 2025
[ Upstream commit ee684de ] As shown in [1], it is possible to corrupt a BPF ELF file such that arbitrary BPF instructions are loaded by libbpf. This can be done by setting a symbol (BPF program) section offset to a large (unsigned) number such that <section start + symbol offset> overflows and points before the section data in the memory. Consider the situation below where: - prog_start = sec_start + symbol_offset <-- size_t overflow here - prog_end = prog_start + prog_size prog_start sec_start prog_end sec_end | | | | v v v v .....................|################################|............ The report in [1] also provides a corrupted BPF ELF which can be used as a reproducer: $ readelf -S crash Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align ... [ 2] uretprobe.mu[...] PROGBITS 0000000000000000 00000040 0000000000000068 0000000000000000 AX 0 0 8 $ readelf -s crash Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name ... 6: ffffffffffffffb8 104 FUNC GLOBAL DEFAULT 2 handle_tp Here, the handle_tp prog has section offset ffffffffffffffb8, i.e. will point before the actual memory where section 2 is allocated. This is also reported by AddressSanitizer: ================================================================= ==1232==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7c7302fe0000 at pc 0x7fc3046e4b77 bp 0x7ffe64677cd0 sp 0x7ffe64677490 READ of size 104 at 0x7c7302fe0000 thread T0 #0 0x7fc3046e4b76 in memcpy (/lib64/libasan.so.8+0xe4b76) #1 0x00000040df3e in bpf_object__init_prog /src/libbpf/src/libbpf.c:856 #2 0x00000040df3e in bpf_object__add_programs /src/libbpf/src/libbpf.c:928 #3 0x00000040df3e in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3930 #4 0x00000040df3e in bpf_object_open /src/libbpf/src/libbpf.c:8067 #5 0x00000040f176 in bpf_object__open_file /src/libbpf/src/libbpf.c:8090 #6 0x000000400c16 in main /poc/poc.c:8 #7 0x7fc3043d25b4 in __libc_start_call_main (/lib64/libc.so.6+0x35b4) #8 0x7fc3043d2667 in __libc_start_main@@GLIBC_2.34 (/lib64/libc.so.6+0x3667) #9 0x000000400b34 in _start (/poc/poc+0x400b34) 0x7c7302fe0000 is located 64 bytes before 104-byte region [0x7c7302fe0040,0x7c7302fe00a8) allocated by thread T0 here: #0 0x7fc3046e716b in malloc (/lib64/libasan.so.8+0xe716b) #1 0x7fc3045ee600 in __libelf_set_rawdata_wrlock (/lib64/libelf.so.1+0xb600) #2 0x7fc3045ef018 in __elf_getdata_rdlock (/lib64/libelf.so.1+0xc018) #3 0x00000040642f in elf_sec_data /src/libbpf/src/libbpf.c:3740 The problem here is that currently, libbpf only checks that the program end is within the section bounds. There used to be a check `while (sec_off < sec_sz)` in bpf_object__add_programs, however, it was removed by commit 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions"). Add a check for detecting the overflow of `sec_off + prog_sz` to bpf_object__init_prog to fix this issue. [1] https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Fixes: 6245947 ("libbpf: Allow gaps in BPF program sections to support overriden weak functions") Reported-by: lmarch2 <[email protected]> Signed-off-by: Viktor Malik <[email protected]> Signed-off-by: Andrii Nakryiko <[email protected]> Reviewed-by: Shung-Hsi Yu <[email protected]> Link: https://github.com/lmarch2/poc/blob/main/libbpf/libbpf.md Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Sasha Levin <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Cleanup the leds support and add support for the button on the to of the Flat.